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4. Indication of achievements! pursuant to article 16 item 2 of the act of law dated
14 March 2003, concerning scientific degrees and scientific titles, and degrees and
titles in the domain of arts (Official Journal No. 65, item 595, with later

amendments):

According to the aforementioned act of law, I wish to indicate the single subject cycle of
8 publications. The papers sum up my research since 2005 and form self-coherent
integrity devoted to description of electron in two-dimensional lattice with Born-
Karman border conditions and subjected to quantised magnetic field.

[ present publications mentioned above in the chronological order, providing for each of
them the Journal impact factor and the number of quotations (according to the Web of

Science database) in the footnote.

a) Title of scientific/artistic achievement

“The band structure of Bloch electrons on a finite two-dimensional system in a quantized

magnetic field”

b) Publications concerning the scientific achievement; listed in chronological
order (author/ authors, title/ titles of publication, year of publication, name of

the publishing house)

H1. A. Wal, Magnetic translation group for a finite system, 2005, Physica Status Solidi (b),
242,291-295.

impact factor: 0.836; number of quotations: 2

H2. A. Wal, Tight binding analogue of cyclotron orbits, 2007, Physica Status Solidi (b),
244, 2559-2563.

impact factor: 1.071; number of quotations: 1

H3. A. Wal, The magnetic translation group for a finite system and the Born-Karman
boundary condition, 2008, Journal of Physics: Conference Series, 104, 012021.

impact factor: none ; number of quotations:2

! In case of achievements accomplished by means of joint work/ works, declarations of all its/ their co-

authors should be presented, stating their estimated percentage individual contributions



H4. A. Wal, The structure of magnetic translation group for a finite system, 2009, Physica
B-Condensed Matter, 404, 1040-1044.

impact factor: 1.056 ; number of quotations: 3

H5. A. Wal, Multielectron irreducible representations of the magnetic translation group,
2009, Physica Status Solidi (b), 246, 1024-1028.

impact factor: 1.150 ; number of quotations: 1

H6. A. Wal, The symmetry of three-electron states in a quantized magnetic field, 2011,
Physica B: Condensed Matter, 406, 2734-2739.

impact factor: 1.063; number of quotations: 1

H7. A. Wal, Band structure, Brillouin zone, and condensation of states for an itinerant
electron in a magnetic quantum dot, 2013, Physica B: Condensed Matter, 410, 222-226.

impact factor: 1.327; number of quotations: 1

H8. A. Wal, Energy bands for finite two-dimensional systems in a quantized magnetic field:
the symmetry of the model, 2013, Journal of Mathematical Chemistry, 51, 2285-2316.

impact factor:1.226; number of quotations: 0

c) description of scientific / artistic objective of the above work / works and

accomplished results, including description of their possible use

The scientific aim of the work is the description of properties of an electron in a two-
dimensional, finite lattice in a quantized magnetic field, especially the change in the
structure of a finite analogon of energy bands and in the Brillouin zone of such system,
as well as determination of quantum numbers which characterize states, also the multi-
electron ones. The method of description is based on tools provided by the symmetry
and group theory. These systems reveal so interesting physical properties that they
were, for a long time, an object of interest for experimentalists as well as theoreticians.
This interest has grown rapidly after discovery of an integer and fractional Hall effect,
and attempts for their theoretical explanation. The characteristic behavior of such
systems consists in dependence of band structure on, even very small, change of
quantized magnetic field which is manifested by the “Hofstadter butterfly”2 on the graph
E(n), withn being the number of quanta of magnetic flux passing through the

2 D. Hofstadter, Phys. Rev. B, 14(6), 2239-2249 (1976).
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elementary lattice cell. The spectrum is of fractal shape, i.e. energy levels for a small
change of flux are similar to those, which can be seen at the large scale. For irrational
number 7 the spectrum reveals properties of Cantor set. These effects are related to
quantization of a magnetic field, strictly speaking, they are a result of incommensurance
of number of quanta of flux and sizes of elementary cell of a two-dimensional lattice.

Despite the long term of investigations for such systems, still there appear new
interesting problems concerning the subject. They are related to theoretical problems
like: composite fermions3, quantum groups and applications of Bethe Ansatz for two-
dimensional systems* quantization problems for low-dimensional manifolds®, and
usage of boundary conditions for a finite lattice®. Within last years such a topic has
become more important, because it is possible now to achieve so large magnetic flux
penetrating the cell of the lattice, that one can observe fractal character of the spectrum.
This accomplishment is realized by the usage of optical lattices, which allow to simulate
a magnetic field, with the magnitude adequate to notice such effects’. Last year, there
came out the paper in which authors informed about observation of fractal character of
the spectrum with the use of Moire superlattice8. The lattice was built by placing atomic
layer of graphene on the hexagonal boron nitride (BN).

The subject presented in this cycle of papers is connected first of all with
application of the symmetry to description of characteristic features of models being
considered. In the literature concerning this topic one can find the mathematical
construction called magnetic translation group (MTG), which replaces the usual
translation group in the presence of a quantized magnetic field. It was introduced by Zak
and Brown in the ‘60s of the last century®. This group provides, by its irreducible
representations, the description of states of an electron on a two-dimensional crystal
lattice subjected to a perpendicular magnetic field with a quantized flux. The

quantization is tuned in such a way, that a flux passing through the elementary cell is
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S. Wu, Phys. Rev. B, 53(15), 9697-9712 (1996).
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7M. Aidelsburger, et. al,, Phys. Rev. Lett. 107, 255301 (2011); K. Jimenez-Garcia, et. al,, Phys. Rev. Lett. 108,
225303 (2012).

8C.R. Dean, et. al., Nature, 497, 598, (2013).
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given by a fractionn = p/qin units of flux quantum h/e, where p and q are integers
with no common divisor. This attempt demands to take into account mutual relations
between quantization of a magnetic field, the size of the finite lattice and applied
boundary conditions. The magnetic field is described by its vector potential, which can
be changed by the choice of appropriate gauge. The selection of a gauge doesn’t change
the energy of the system, however it can be important taking into account the
compatibility conditions between parameters of magnetic field and chosen boundary
conditions.

The group theory used for systems being investigated allows to analyze problems
concerning the subject, seldom discussed till now in the literature. The most important
I'would like to list are: dependence of the structure of MTG on the chosen gauge and
applied boundary conditions, determination of equivalence relations in the set of
irreducible representations whose parameters provide exact quantum numbers
characterizing band structure of finite crystals, description of a change of the Brillouine
zone in a quantized magnetic field, and presentation of “non-physical” representations,
with the way of their determination and interpretation in the context of multi-electron
systems.

My research was restricted mainly to the systems of a finite size. For these
structures the Born-Karman boundary conditions were applied, since | was interested in
the description of energy bands as the function of quasimomentum, like it is usually
presented in condensed matter physics. There is another attempt related to Haldane
sphere, where the main parameter is angular momentum, however, I prefer to use the
symmetry given by the magnetic translation group what determines the choice of
periodic boundary conditions.

At the beginning my research concerned compatibility conditions between
magnetic field given by the vector potential together with the quantization parameter
n = p/q and sizes of the finite lattice. These conditions were described with the help of
the magnetic translation group and its irreducible representations. The latter were
determined with the use of induction procedure, which allows computer
implementation of an algorithm for evaluation of irreducible representations for given
parameters of the model. The important result in this part of research was
demonstration that boundary conditions applied to finite systems determine the type of
the vector potential being applied, since both should satisfy compatibility relations.
I considered two the most popular gauges: Landau and symmetric one.

Compatibility relations are associated also with the dependence of the structure

of MTG on the chosen gauge. Considering both of the mentioned gauges, | showed how




the details of this structure can be determined by the gauge. At this stage of research
I was able to present each group element as a product of generators.

In the literature related to the discussed subject occurs the term “magnetic
Brillouin zone”10, which illustrates changes in the Brillouin zone of two-dimensional
crystal subjected to a quantized magnetic field. Generally, these changes are described
through reduction of possible values of quasimomenta along the chosen direction in
areciprocal space. The detailed analysis of irreducible representations of MTG, whose
parameters define non-equivalent quasimomenta, allows to determine “magnetic band
Brillouin zone”, as a set of wave vectors k over which finite analogues of energy bands
are defined.

Zak in the paper introducing MTG, defined selected irreducible representations
as “physical”, i.e. the ones which are important in the description of one-electron states.
They are determined by choosing a given value of a parameter of irreducible
representations of MTG, strictly speaking, representations of a gauge group being
a subgroup of MTG. The other values of this parameter are described as non-physical.
Florek in his paper introduced an idea that representations related to the latter
parameters can be applied to the multi-electron system!!. [ extended this approach to
the system of identical particles taking into account the symmetric group (non-
distinguishable particles) as well as the Hubbard type interactions between electrons.

The cycle of papers begins with the presentation of methods of determination of
MTG and its irreducible representations for finite lattices. In the following works
[ studied properties of such a system subjected to a quantized magnetic field. The main
results of investigations are listed below:

1. Determination of the structure of the magnetic translation group for selected
gauges of a magnetic field (Landau and symmetric). Elements of MTG can be
presented in the form (t,y), where t means a translation and y is a phase related
to the translation (effect of a magnetic field). Calculations show, that a set of
phases connected with a translation depends not only on the chosen gauge and
the value of the parametern =p/q, but also on arithmetic properties of
components of the vector t. The latter dependence is observed, however, only for
the symmetric gauge. It was shown also, that for such a gauge the order of MTG
does not depend on the parity of integer p, however, the parity of this integer

influences on the detailed structure of the group.

10 M. Kohmoto, Ann. Phys. (N.Y), 160, 343-354 (1985).
"' W. Florek, Phys. Rev. B, 55, 1449-1453, (1997); . Math. Phys. 42, 5177, (2001).



2. Determination of relations between parameters of a quantized magnetic field,
Born-Karman boundary conditions and the chosen gauge. Analysis of this type of
dependences shows that for symmetric gauge, in order to use periodic boundary
conditions, it is necessary to restrict possible values of quantization of magnetic
field to even values of integer p. For Landau gauge this type of reliance is not
observed, i.e. all values ofp =1,2,3,...L are allowed, where L is the size of
alattice in a given direction. The main result of this part of research is
determination of influence of the chosen gauge on the admissible quantization of
a magnetic field, when periodic boundary conditions are applied.

3. Interpretations of “non-physical” irreducible representations ['***¥S of magnetic
translation group. In the literature on this subject, one can use usually “physical”
representations, i.e. representations selected by the choice of the parameter
s = 1. The integer s labels representations of a subgroup of MTG related to the
phase factory, i.e. the gauge group. The way of determination of irreducible
representations for larger values of s was presented, and physical interpretation
of them was introduced. These representations can be used for the description of
multi-electron systems. The characterization of such systems should contain
(because of indistinguishability of particles) the symmetric and the unitary
group, introduced according to the duality of Weyl!2, The considered model was
supplemented by the interaction of the Hubbard type.

4. Determination of parameters describing the band structure in a magnetic field.
Parameters ky, k,, of irreducible representation I'***» of MTG label band states.
Values of these quasimomenta create magnetic Brillouin zone (MBZ). Quantum
number y’, being the dimension of representation I'*x*y$ labels subbands on
which the non-degenerate band splits in a magnetic field. For a magnetic field
described by a fractionn = p/q, this dimension is equal toy’ = q. The second
parameter y determines the degree of degeneration of each subband and is
related to the multiplicity of representationT in decomposition of reducible
representation of MTG, defined in the positional space. Finally, a single non-
degenerate band of a finite crystal without magnetic field splits in a quantized
field into g subbands, each of them being g-tuply degenerate. Additional quantum
number s related to gauge subgroup of MTG describes the number of electrons in
the system.

The magnetic field changes the translational symmetry of the system introducing

non-abelian type of elements of the symmetry group. This non-commutativity

12H. Weyl, The theory of groups and quantum mechanics, New York: Dover Publications (1984).




leads indeed to rising up the symmetry, what is reflected in the
multidimensionality of irreducible representations of MTG. It stays in the
contrast with the one-dimensional Bloch states being the representations of an
abelian translation group. Symmetry of the new structure in a magnetic field is
described by a magnetic cell, which is g-times larger than the crystallographic
one. Magnetic Brillouin zone is g-tuply rarefied, i.e. consists of smaller set of
admissible quasimomenta in a given direction, say y. It was shown, that this
rarefaction should be supplemented by complementary reduction of
quasimomenta in the direction perpendicular to the mentioned one. It results
from the equivalent relation in the set of irreducible representations. The band
structure defined over this rarefied zone, called magnetic band Brillouin zone
(MBBZ), illustrates the process of condensation of states over admissible
quasimomenta, under symmetry of MTG. Such a degeneration together with
ararefaction of the zone are analogues of merging of free electron bands in
a magnetic field into Landau levels.

5. Description of induction method of irreducible representations of magnetic
translation group for multi-electron systems. The number of electrons is related
to the parameter s of irreducible representations I'***S_ [t was shown, that
determination of such representations fors > 1is relatively easy in the case,
when this parameter has no common divisor with parameter g describing
magnetic field (the magnetic flux is defined by n = p/q).

6. Determination of transition matrices between three bases: position, momentum
and symmetry adapted ones. They allow a full characterization of states similar to
the Racah theory of angular momentum adapted to finite crystals. This is true for
one-electron as well as for multi-electron states, however, quantum numbers of
the latter concern physical quantity related to the whole system of s electrons. In
the construction of transition matrices the projection operators, built with the

help of irreducible representations of MTG and symmetric groups Xs, were used.

Knowledge of energy spectrum for nano and mesoscopic systems is important
nowadays on account of technical possibility of producing such structures. The topics
presented in the cycle of papers can be applied in description of discussed structures
subjected to magnetic field. In this context, particularly interesting is the determination
of physically correct and mathematically treated boundary conditions applied to the

finite lattice. Equally interesting and instructive is the study of changes in energy band




structure, caused by the quantized magnetic field and finiteness of the lattice. An

acquired experience will allow to design a system of given energy spectrum?3.

Studies conducted in the works H1-H8

H1. A. Wal, Magnetic translation group for a finite system, 2005, Physica Status Solidi (b),
242,291-295.

In this paper the model of an itinerant electron was considered, with interaction
restricted to the nearest neighbors only. The dynamics of the system was described by
the tight binding Hamiltonian and the finite crystal was closed with the Born-Karman
boundary conditions. The simplest model with isotropic hopping integral was used and
magnetic field was introduces by phase 9;, defined for each edge (4, ) of lattice cells, A
and u meaning the adjacent nodes of the crystal lattice. The key parameter of this model
is fractionn = p/q representing the magnetic flux passing through elementary cell of
the lattice and expressed in units of flux of magnetic quantum h/e. The symmetric gauge
was chosen for the field.

The symmetry of this model was described by magnetic translation group. This
group for a finite two-dimensional crystal (on the example with spatial size Ly XLy, =
4 x 4 and n = 1/2, where the sizes of a lattice were presented in a unit of length of the
elementary cell) was calculated and characterized. The method of determination of
irreducible representations of MTG, based on the induction procedure from a maximal
subgroup, was presented!*. This subgroup is chosen according to the magnetic cell, i.e.
the cell for which the summation of the phases along its edges results in an integer
number. This means that the magnetic flux through such a cell is integer multiplicity of
flux quantum. The subgroup is abelian, which is a helpful feature to find its irreducible
representations.

The method of induction has proved to be effective, and thus was written as an
algorithm. It was implemented in the Maple package and used in further calculations for
the purpose of subsequent papers concerning the subject.

The parameters of resulting irreducible representations label electron states in
both magnetic, and periodic potential. In the context of following papers it should be
emphasized, that periodic boundary conditions were applied. As it will be shown they
have an influence on compatibility conditions, i.e. on the relation between the size of the

lattice, the quantization of magnetic field, and the used gauge.

13]. Zak, J. Phys. Conf. Ser. 104, 012013 (2008).
*]. Mozrzymas, Application of group theory in physics, PWN Warszawa, Wroctaw, 1977 (in Polish).




H2. A. Wal, Tight binding analogue of cyclotron orbits, 2007, Physica Status Solidi (b)
244, 2559-2563.

In the paper, a tight binding analogue of cyclotron orbit were considered, as well as
relations between boundary conditions and quantization of magnetic field. The Born-
Karman boundary conditions were applied. They introduced quasimomentum, the
quantum number widely used in the description of energy bands of crystals. The tight
binding model expressed by hopping Hamiltonian describes the interactions of electrons
with a magnetic field and a periodic potential. The structure of energy bands is very
sensitive to the change of n, which leads to the dependence of the type of Hofstadter
butterfly.

The gauge was chosen as the symmetric one. The boundary conditions provide
the equivalence relations between elements of magnetic translation group. This leads at
the same time to restriction of possible quantization of magnetic field, i.e. we obtain the
relationn = r/L, whereLis a period of two-dimensional crystal andris an even
number.

The Hamiltonian should commute with elements of the magnetic translation
group, in particular with the ones, which concern the translation by primitive vectors of
the lattice. This condition provides the distributions of a phase (depending on the
chosen gauge) defined for each edge of elementary cells. In the paper, such distribution
was presented for the finite crystal. The spreading of the phases should be consistent
with boundary conditions applied, which limits the permissible values of fraction n. Its
nominator should belong to the set of even integers from the range r € {0, L*}, where L*
is an even number smaller than L.

Operators T(a) and T(b) introduced in the paper represent the action of the
magnetic translation group on the space of quantum states of the electron. They are
unitary noncommuting operators and we are not able to diagonalize two of them
simultaneously. The basis of states can be chosen in such a way, that one of operators,
say T(b) can be diagonalized. Then the second, T(a), cannot be fully diagonalized, and
each irreducible subspace is a natural analogue of the cyclotronic orbit of the free
electron case. T(a) acts in a way cyclically in each irreducible subspace, what completes

the tight binding analogy to cyclotron orbits.

H3. A. Wal, The magnetic translation group for a finite system and the Born-Karman
boundary condition, 2008, Journal of Physics: Conference Series, 104, 012021.
In the paper, the discussion mentioned in paper H2 and concerning mutual relations

between Born-Karman conditions and two types of applied gauge, i.e. symmetric and
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Landau, was extended. The main aim of research was assessment of usefulness of both
gauges in the description of finite systems with periodic boundary conditions.

Elements of magnetic translation group can be written as (t,y), where tis
a translation belonging to the translation group T of the finite crystal and y is a phase
introduced by a magnetic field. The phase part, and thus also, group multiplication,
depends on the chosen gauge. Periodic boundary conditions establish equivalence
relations between group elements, which differ by a period N of the finite crystal (the
size of the crystal is given in unit of elementary cell). These relations together with the
multiplication rule determine criteria for quantization of a magnetic field, i.e. admissible
value of7. For Landau gauge this parameter should be in the form#n = n/N, where
n=0,1,..N — 1. For the symmetric gauge, however, numerator of the fraction 1 should
be an even integer from the range (0, N — 1). Quantization of the magnetic flux within
considered model depends, in this way, on the chosen gauge. From two presented
gauges, the Landau gauge is better adapted to the symmetry of the model, since, in this
case, the set of admissible values of 7 is two times larger than for the symmetric gauge.
The conclusion is, that for a small system the mutual relation between sizes of the
lattice, chosen boundary conditions and gauges are important and should be taken into

account in the description of such systems.

H4. A. Wal, The structure of magnetic translation group for a finite system, 2009, Physica
B-Condensed Matter, 404, 1040-1044.

The main aim of the paper was determination of the structure of the magnetic
translation group and examination how it depends on the chosen gauge of a magnetic
field. The influence of vector potential on the features of considered model was observed
already in the previous papers (H2-H3), where an interrelationship between the sizes of
the lattice, quantization of flux and applied gauge was noticed. This time, particular
emphasis was put on the investigation of dependence of the structure on the vector
potential of a magnetic field. Research was carried out on the rectangular finite lattice
with a magnetic field defined by the parameter n = p/q, where p and g are integers with
no common divisors.

Elements of magnetic translation group consist of a translation ¢ and an
associated phase, denoted asy. This phase is determined by the chosen gauge and the
parameter 7). Properties of elements of MTG were investigated for the symmetric and the
Landau gauge.

For the symmetric gauge, phase factor depends on the magnetic field according to

the formulay = exp(2 mi §§9), where 6 € {0,1, ...q} for evenpand 8 € {0,1, ... 2q} for
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odd p®>. In this way, it appears at the first sight, that the order of the MTG, which can be
calculated as a product of the order of the translation group T by the number of
elements in the set of §, changes according to the parity of p. However, the careful
calculations didn’t confirm this hypothesis. In order to establish the relation between
a translation t and a corresponding phase y, both of them forming an element of MTG,
the multiplication rule for the group was used. The gathering of the phase during the
movement of the electron is represented in the considered approach through the
multiplication of group elements expressed by group generators. Calculations showed,
that the order of MTG doesn’t depend on the parity of p and is equal to |T|q, where |T|
means the order of the translation group. It should be stressed, however, that details of
the structure of MTG exhibit dependence on parity of this integer. For an even value,
each translation is accompanied with the same set of phases, while for an odd p the
number of phases in the set is the same but their values depend on the components
(tx ty) of the vector t.

Similar calculations were performed for the Landau gauge. It appeared that the
order of a group is the same, what is expected for an isomorphic group representing the
same abstract group. This time, however, the set of phases associated with each
translation is the same, independent on the parity of p.

For both considered gauges, each group element was expressed by two
generators introduced in this paper. The features of maximal abelian group and the class
of conjugated elements were also provided. These structures are important for
determination of irreducible representations of MTG. Results obtained in this paper
were the basis for further investigations related to the energy band structure in

a magnetic field.

H5. A. Wal, Multielectron irreducible representations of the magnetic translation group,
2009, Physica Status Solidi (B), 246, 1024-1028.

In the paper, the procedure of determination of irreducible representations ['***y:S of
the magnetic translation group was presented for the parameter s = 1, as well as for
s > 1. The procedure is based on the method of induction from the maximal abelian
subgroup, because its one-dimensional representations may be easily obtained. Usually
in the literature the so called “physical” representations (parameter s = 1) are
discussed. They are used for the description of one-electron states. Representations

with other value of s are called “nonphysical”. There are papers by Florek6, in which the

1> W. Opechowski, W. Tam, Physica 42, 529-556 (1969).
16 W. Florek, Phys. Rev. B 55, 1449-1453 (1997), W. Florek, . Phys. Condens. Matter 11, 2523-2529 (1999).
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author shows, with the help of product of irreducible representations I', that
representations with s = 2 can be applied for the description of two-electron states. In
the present paper it was demonstrated that reducible representations, being the tensor
product of two reducible representations related to one electron state, decompose into
irreducible representations of MTG with the parameters = 2. It means, that the
parameter is connected with the number of electrons in the system and irreducible
representations with such a value of s can be used for the description of multi-electron
states. In the decomposition of tensor product of reducible representations symmetric
and anti-symmetric parts were considered in order to find anti-symmetric states,
according to the Pauli exclusion principle. This allowed to consider the spin in the
model.

The induction procedure is simple for case s = 1 but it can be easily extended
also for a larger value of the parameter. In the paper it was shown that an outline of the
induction remains the same, for those values of s, which have no common divisors with
q, the quantity characterizing the magnetic field through parametern = p/q. The
method of induction was illustrated on an example of a finite lattice with quantization of

magnetic field given by n = 1/3.

H6. A. Wal, The symmetry of three-electron states in a quantized magnetic field, 2011,
Physica B: Condensed Matter, 406, 2734-2739.
The main aim of the paper was presentation of kinematics of multi-electron states for
a two-dimensional square lattice subjected to quantized magnetic field. Multi-electron
states were expressed with the use of tensor products of one-electron states and the
main classification tool was the symmetry. In order to obtain the full description the
spin was also considered, what caused the use of permutation and unitary symmetry
together with the translational one. The symmetry was described by corresponding
groups: the magnetic translation group, the symmetric group (permutation of electrons)
and the unitary group (permutation of electron states). The introduction of such
symmetries to the description of the system, allows to distinguish orbital and spin part
in the space of states in the suitable tensor product representing multi-electron states.
This separation permits to restrict discussion only to “orbital” (spatial) part, because its
symmetry determines the symmetry of the “spin” part with which the former is
connected, in order to guarantee the anti-symmetrical property of the whole wave
function of electrons.

Irreducible representations of mentioned groups were used in determination of
symmetry adapted bases, according to the duality of Weyl. Representations of the

permutation A* and the unitary D# group are characterized by partitions A of number of
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electrons n (i.e. by the decompositions of number n into the sum of integers).
Representations of magnetic translation group I'*"»* are labeled by quasimomenta
Ky, Ky (these symbols are used to distinguish them from the quasimomenta (ky ky) =

(2mKy, 2mky) ) and s. The last parameter is connected with the representation of phase

subgroups, but at the same time is related to the number n of electrons in considered
system. This means that the representation describing the translational symmetry of n
electrons in a magnetic field is of the form I'**»™  The tensor product of
representations M®" (M means the representation of the magnetic translational group
defined in the space of one-electron states) acting on positional space of n electrons,
decomposes into irreducible representations [*x*y™,

The irreducible representations of discussed symmetry groups allow to
determine bases adapted to the translational symmetry in a magnetic field, as well as to
the permutational one. The former is given by parameters (k,, Ky,s) of suitable
irreducible representation and by additional parameter 8 related to multiplicity of
representation ["**»* in the decomposition of M®". The basis calculated with the use
of projection operator can be written in the form b}T¢ = {|k,, k,, s, B)}.

The basis b}, = {|4,t,y)} adapted to the permutational symmetry is determined
by the partition 4 of the integer n, as well as by bases of irreducible representations
t € D* and y € A* of unitary and symmetric group, respectively. This basis should be
connected with suitable basis bj.. = {|4,¥)} of a spin subspace, where 1 means
transposition of partition 4, and y is a semistandard Yang tableaux. The basis of “orbital”
part was determined with the use of projection operator, which selects from products of
one-electron states only those, which exhibit appropriate symmetry under permutation
of particles.

Irreducible bases (adapted to the symmetry of the system) obtained in this way,
allow to construct the matrices which are used to transform the positional basis

= {|i,j)}, where i, j mean the coordinates of an electron on the square lattice, to the
symmetry adapted.

The energy of electrons is determined with the help of tight binding Hamiltonian,
but extended by the Hubbard term, responsible for repulsive interaction between
electrons with the same node coordinates, but with a different spin projection. The
Hamiltonian can be diagonalized by transformation from the positional to the symmetry
adapted basis. When we use the translational symmetry, quantum numbers are
quasimomenta, but in the case of permutation the quantum number is the total spin S.
Thanks to the matrices describing the transformation between different bases it is

possible to determine for each state the value of quasimomentum (and this way, to find
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out the energy band E(k)) as well as the total spin S. In the paper, the Zeeman’s effect
was not considered, however it is possible to include it within the model being
discussed.

Calculations were carried out for the case of three electrons. This choice was
determined, first of all, by the need to provide clearness of description, which can be
destroyed by the “combinatorial explosion” arising for larger value of n. The method was
explained in details on the example of the finite system of the size 3 x 3 subjected to
a quantized magnetic field given by n = 1/3. This model is rather small but effectively

solved and is sufficient to demonstrate main features of the physical system.

H7. A. Wal, Band structure, Brillouin zone, and condensation of states for an itinerant
electron in a magnetic quantum dot, 2013, Physica B: Condensed Matter, 410, 222-226.
The main aim of the paper was the description of the band structure, in the tight binding
approximation, of two-dimensional, finite lattice subjected to a quantized magnetic field.
The Born-Karman boundary conditions were applied and the energy was determined in
the unit of hopping integral t, which describes the interaction of the nearest neighbors
(interactions between next neighbors were omitted). Usually the band structure is
determined over the Brillouin zone (BZ) defined by irreducible representations of the
translational group being the symmetry group of two-dimensional crystal. The presence
of a magnetic field changes the translational symmetry introducing instead non-abelian
symmetry given by the magnetic translation group. There is an abelian subgroup H,
which defines the new structure of reciprocal space - the so called magnetic Brillouin
zone (MBZ). It is a subset of the Brillouin zone, MBZ c BZ, i.e. it is rarefied in comparison
with the BZ. The maximal abelian subgroup defining MBZ can be chosen in several ways,
however, the most popular choice consists in rarefication of quasimomenta along
selected axis, say y. The number of elements of MBZ in this direction is q times smaller
in comparison with the BZ.

Non-abelian properties of MTG lead to additional rarefaction of the Brillouin
zone, this time in the direction perpendicular to the previous one. It is connected with
equivalence relation between irreducible representations [***vS of MTG. The relation
between irreducible representations of MTG emerges as a natural consequence of the
induction procedure. Along this procedure induction should be carried out for
representatives of the orbit of an action of MTG on the set of irreducible representations
of the subgroup H. This determines the relations between parameters k, and k. If they
fulfill the condition k} =k, +7njmod1, where JEL

, then corresponding

. ! - - - -
representations I'**»S and I'***»S are equivalent, what implies the equivalence
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between k, and ky. As a consequence, the set of non-equivalent quasimomenta are
rarefied along x direction.

The Brillouin zone should be defined over non-equivalent quasimomenta.
Eventually, the Brillouin zone in magnetic field is g2-tuply rarefied and results in the
magnetic band Brillouin zone (MBBZ), i.e. exactly this set of quasimomenta in the
reciprocal space which serves as the support of the energy band structure.

The process of rarefication is connected with the condensation of states, because
the total number of states should be conserved. This increases the degeneration of the
energy band when going from BZ to MBZ, and eventually to MBBZ. As a result the
structure of energy bands consists of q bands, each of them being g-tuply rarefied. The
states are labeled by quantum numbers k,, kyand y,y’. Parameters k,, K, create the
MBBZ, whereas the index y’labels magnetic subbands andy is associated with the
degeneration of an energy level. Introducing the description of the state through the
density matrix one can define a measure of the concurrence between states: the first
given by k,, k,, € MBBZ and index y’ and the second characterized by quasimomentum
k € BZ. This measure allows to describe, which states from BZ overlap with states

Kk € MBBZ, and in this way it demonstrates quantitatively the effect of a condensation.

H8. A. Wal, Energy bands for finite two-dimensional systems in a quantised magnetic field:
the symmetry of the model, 2013, Journal of Mathematical Chemistry, 51, 2285-2316.
The paper concerns energy bands of a two-dimensional lattice in a quantized magnetic
field. The key role in the description of such a system plays the symmetry of the model
described by the magnetic translation group together with symmetric and unitary
groups. The last two groups are used to the analysis of multi-electron states according to
duality of Weyl.

The paper presents, in compact form, methods used for the description of an
electron in a magnetic field containing in other author’s papers. Its important novelty is
presentation of results and the method used by the author in previous papers in relation
to the achievements of other researchers. This allows to demonstrate research in the
wider context and point out possible applications, also in fields other than physics, for
example in quantum chemistry. These topics are considered particularly in introduction
and during the discussion concerning properties of the magnetic translation group and
its representations. In the chapter devoted to multi-electron states, references related to
“non-physical” representations are collected and discussed. This extension of work by

review of papers related to the subject allows to determine mutual relations between
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various methods used in the analysis of the problem of Bloch electron in a magnetic
field.

The paper starts with the extensive introduction devoted to the problem of an
electron in a magnetic field. It contains the review of methods used to solve this
problem, starting from free electron model and ending on the analysis of a structure of
energy bands, defined over magnetic Brillouin zone for the Bloch electron in a quantized
magnetic field. In next chapters, discussion concerns following topics: the structure of
the magnetic translation group, mutual relations between gauge and applied boundary
conditions, irreducible representations of MTG. The induction procedure for irreducible
representations is presented in detail, even for multi-electron systems. The key role in
the investigation was played by the group theory. Thanks to the contemporary computer
programs, group theory methods, which are considered as tedious and complicated, can
be used effectively to solve problems concerning electrons in a periodic potential and

a magnetic field.
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Education, dated 1 September 2011, Official Journal No. 196. [tem 1165).

5. Description of other scientific and research achievements

a) Description of the scientific career before obtaining the doctorate degree

My scientific interest, after my first employment as an assistant, concerned application
of group theory to the description of low-dimensional finite crystals. At that time
[ focused on determination of solutions of the Heisenberg magnet with the help of Bethe
Ansatz. Results of such investigations were published in several papers, in which
[ analyzed the structure of solution of the Heisenberg magnet, in particular, from the

point of view of hidden symmetry defined by the group of authomorphism. The
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cooperation, concerning this topic, with dr M. Kuzma from Rzeszow and professor T.
Lulek from Poznan, resulted in contribution in series of conferences “Symmetry and
Structural Properties of Condensed Matter” organized by Adam Mickiewicz University
from Poznan, and dedicated to symmetry and structural properties of matter.

Results of research were presented in my doctor’s thesis “Crystallographic and
magnetic gauge symmetries of a finite linear chain”. The promoter was prof. T. Lulek
from Adam Mickiewicz University in Poznan, where the public discussion on my thesis
was conducted. In my work I considered the symmetry of finite systems according to the
Weyl's recipe, which suggests investigation of the hidden symmetry related to the group
of automorphisms of the group of obvious symmetry of the system. By analogy to space
groups, the whole symmetry of the system is described by an extension of the group of
automorphism group by the symmetry group of the model, i.e. translational group.
These extensions for linear finite chains were classified in the base of Mac Lane’s
method. The second part of the thesis was devoted to properties of energy bands of the
Heisenberg linear magnet with spins s = 1/2 on each node. The problem was analyzed
with the help of translational and permutation symmetry. It allowed to determine finite
analogue of energy band. The existence of rarefied bands, i.e. bands defined only over
selected quasimomenta k from the Brillouin zone (BZ) was pointed out. Such an
approach to analysis of energy spectrum gave opportunity to investigate the influence of
number of nodes on the shape of energy bands.

During that time I was involved also in the research concerning the influence of
laser radiation on distribution of mercury in the semiconductor CdxHgi1«Te.
I constructed the algorithm and the computer program for the simulation of space-time

distribution of temperature and concentration of mercury in that particular
semiconductor.

b) Description of the scientific career after having obtained the doctorate degree

After PhD, my scientific interest was focused on two topics. I continued the research
concentrated on the one-dimensional Heisenberg magnet. Together with the colleagues
from Rzeszow, Poznan and professor Caspers from University of Twente (Enschede,
Netherlands) we applied method, developed by him, to find the solution of the
eigenvalue problem for the finite Heisenberg chain. This approach is based on the
asymptotic solutions, which are easy to obtain for large number of nodes of the
Heisenberg chain. These asymptotic results are treated as a starting point for
determination of consecutive solutions for decreasing number N of nodes. It is assumed,
that the change of obtained results, during the decreasing of length of the chain, is quasi-

continuous for fixed values of parameters of Bethe equations, i.e. winding numbers 4;.
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However, for the special value Ng of length, this continuity is broken and one can
observe a change of character of solutions, for example the real solution transforms into
the complex one. Depending on the kind of solutions, on both sides of Ng, we
distinguished three types of special points: critical points, transition points and limiting
points.

At that time [ was involved in investigations of the structure of energy bands of
the Heisenberg chain. Thanks to the application of Bethe Ansatz and asymptotic method
mentioned above, we analyzed the structure of energy bands for the finite and small
number N as a function of quasimomentum and the total spin. We distinguished, in the
spectrum, bounded and scattered states. The lowest energy band of ferromagnetic states
was described with the help of the rotational band modell’. For a small system, N < 10,
we observed small difference between results obtained by the rotational model and
Bethe equations.

Determination of solutions of the eigenvalue problem of the Heisenberg magnet
XXX with spin s = 1/2 can be improved by application of the basis of wavelets. It allows
to decrease (N times) the dimension of a secular problem by using the translational
symmetry described by the cyclic group Cy. Classical configuration space Q™ is reduced
then to subspaces spanned on the orbits of the group Cy, where r means the number of
spin deviations, i.e. the number of spins with the projection opposite to the vacuum state
(in the vacuum state projections of spins are parallel). Within this method the matrix of
Hamiltonian defined in the space Q") reduces, for each quasimomentum k from the
Brillouin zone, to submatrices defined in configuration subspace T = Q™ /(.

The main result of the research concerning this topic was a full characterization
of solutions of the finite one-dimensional Heisenberg magnet, also with the use of the
combinatorial object called “rigged string”. Within the method, it is possible to find and
classify, on the combinatorial way, eigenvalues without the need of solving secular
equations.

My second topic of research, after PhD, was investigations of a two-dimensional
finite system subjected to a quantized magnetic field. This research became dominant in
last six years and resulted in a series of papers devoted to application of the magnetic
translation group to the description of an electron in a periodic potential and quantized
magnetic field. This topic is discussed in details in the part containing description of

scientific achievement.

17]. Schnack, M. Luban, Phys. Rev. B 63, 014418 (2000).
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¢) Scientific and research plans for the nearest years

In the nearest future I plane to combine, till now conducted separately, topics
concerning the one-dimensional Heisenberg chain and two-dimensional lattices in
amagnetic field. It can be achieved by the use of the method of algebraic Bethe Ansatz
(BA). The eigenvalue problem for selected quasimomenta from the Brillouin zone of an
electron in a two-dimensional periodic potential and quantized magnetic field can be
solved with the use of BA 8. Within this context, particularly interesting seems to be the
use of the string hypothesis, which allows to find asymptotic solutions for a large value
of g, the parameter describing a magnetic field.

On the base of the results already obtained the promising, but difficult topic, is
determination of physically correct and mathematically treated boundary conditions for
nanoscopic systems subjected to a magnetic field. The new scientific center built at the
Faculty of Mathematics and Natural Sciences of University of Rzeszéw gives the
opportunity to combine the mathematical intuition with the nanotechnology. This can be
possible with the help of the scientific equipment, which allows, in particular,
production of low-dimensional structures using MBE method and nanolithography.
There are also instruments for measuring electron transport in such structures at very

low temperatures and strong magnetic field.

d) Distinctions as a result of scientific research

1997 I degree award of the Rector of the Pedagogical University in Rzeszow,
1994, for scientific accomplishments.

2008, 2010, Awards of the Dean of the Faculty of Mathematics and Natural Science of

2012 the University of Rzeszow, three awards, for accomplishments in the
scientific work.

e) Membership in organizations/ Functions performed

Since 2003 Council of the Faculty of Mathematics and Natural Science of the
University of Rzeszow, member

Since 2004 Rzeszow Branch of the Polish Physical Society, member

Since 2010 Subcarpathian Renewable Energy Cluster, Ecoenergetics Carpathia

Region Association, member

18 P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 72, 1890-1893 (1994); K. Hoshi, and Y. Hatsugai, Phys.
Rev. B 61, 4409-4412 (2000).




f) Professional experience in national and international scientific or academic

centers
1995
2003, 2005
2009
2012

Bayreuth University, Bayreuth, Germany, DAAD fellowship, 5 months
University of Twente, Enschede, Nederlands, short visits (one week)
University of Silesia, Katowice, Poland, postdoc., 4 months

University of South Australia, Adelaide, Australia, short visit (10 days)
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