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4.1 Introduction

A typical quantum system has an infinitely dimensional Hilbert space. An example might
be a harmonic oscillator or a hydrogen atom whose Hamiltonians have infinite number of
cnergy levels. Nevertheless, in many cases such systems are treated as finite-dimensional as
for example only a few energy levels are important when a system is coupled with the electro-
magnetic field with a fixed frequency spectrum. The Hilbert space of such finite-dimensional
system will be denoted by H. Despite considerable interest in recent years, understanding
of correlations in multipartite finite dimensional quantum systems is still incomplete. Nat-
ural methods of analysis for such systems are methods of linear algebra. They allow to
answer many interesting questions concerning wide range of properties of quantum correla-
tions [55, 33]. They, however, do not give a deeper insight into the geometric structure of
the space of states. The existence of this structure enables the use of recently developed
advanced methods of complex algebraic/symplectic geometry. Publications [1-6] discussed
here are the result of a research programme whose goal was to fill this gap and apply these
advanced methods in the context of quantum correlations.

One of the basic problems in the theory of quantum correlations is the classification of
states with respect to local operations performed independently on subsystems of a given sys-
tem. There are two main classes of such operations: (1) local unitary - hereinafter referred to
as LU, (2) SLOCC - Stochastic Local Operations with Classical Communication. Mathemat-
ically, these operations correspond to the action of some compact group K C SU(H) in case
(1) and its complexification G = K € in case (2) on the space of states. The space of pure
states (after neglecting the global phase) is the projective space P(#H), and for mixed states,
the space of isospectral density matrices is the adjoint orbit of the unitary group SU(H)
action. The key fact is that in both cases, these spaces have a natural geometric (Kéhler)
structure, and therefore in particular they are symplectic manifolds. Moreover, the action of
the compact group on M preserves the symplectic structure which yields the existence of the
momentum map. This map, in the cases considered here, assigns to a state of L particles its
reduced one-particle density matrices, and therefore is directly related to the partial trace
over I, — 1 particles. This identification opens up new possibilities as it provides a well-
developed tools and methods of algebraic/symplectic geometry in the context of one-particle
density matrices. Using this apparatus in the series of paper [1-6], published together with
my colleagues:

e I show when information contained in one-particle density matrices is sufficient to solve
the problem of LU-equivalence and provide full characterisation of geometric structure
of sets of LU-equivalent states [6].

e I show that the existence of the so-called exceptional states is an obstacle for solving
the LU-equivalence problem using only one-particle reduced density matrix [5]

e For the many qubit system I show how many additional K-invariant polynomials (ex-
cept those directly derived from one-qubit density matrices) are needed to solve the
LU-equivalence problem. This number varies depending on the spectra of the reduced
matrices and I describe how [4].




e I propose a new, more coarse, classification of states under SLOCC operations. It
always gives a finite number of generalised SLOCC classes. The proposed method
covers pure states of distinguishable particles as well as fermions and bosons [3].

e I present an algorithm for finding critical points of the linear entropy for any number
of qubits [1]. This algorithm significantly improves the method proposed in [3].

e I give the geometric and topological characterisations of two-particle mixed states with
zero discord, more specifically of CC' and C'Q states. Sets of these states are closure
of the set of symplectic orbits of SU(N;) x SU(N,) and SU(N;) X Iy,, where N; and
N, are the dimensions of Hilbert spaces of both particles. In addition, I show that
these are the only states for which orbits of the considered groups have nonvanishing
Euler-Poincareé characteristics [2].

4.2 The momentum map
4.2.1 General setting

In this section we introduce and discuss the momentum map in general setting [24]. Then we
give its interpretation in a quantum correlations setting. As we mentioned in the introduc-
tion, the momentum map appears always when a Lie group acts on a symplectic manifold
preserving the symplectic structure. In the following K will be always a connected compact
semisimple matrix Lie group acting in a smooth and symplectic way on a symplectic manifold
(M, w). For each element of the Lie algebra ¢ € € = Lie(K) of the group K the fundamental
vector field £ € (M) is assigned in the standard way. The map ~: (¢, [-,-]) — (x(M), [,"])
is a homomorphism of Lie algebras. As M is a symplectic manifold the fundamental vector
fields are Hamiltonian. Therefore if the manifold M has the trivial first de Rham cohomology
group then for the vector field .‘,-: there is a well defined function g, such that du, = w(é ).
The functions g can be chosen to be linear in £ € £, and if the group K is semisimple the
mapping & — e is a Lie algebras homomorphism from € to (C*°(M), {+,-}), where {-,-} is
the standard Poisson bracket induced by the symplectic form w. Under these assumptions,
we also obtain the unique map p : M — & defined by {u(z),&) = pe(z) that is called the
momentum map.

Note that the group K acts also on its Lic algebra £ by the adjoint action Ady¢ = g& g L.
The dual to this action is the coadjoint action of K on £*. For a semisimple K the momentum
map is equivariant, i.e. p(®y(z)) = Adju(x) for any = € M and g € K. Orbits of K-action
on M are therefore mapped (by u) onto orbits of the coadjoint action in €". Coadjoint
orbits are in turn symplectic manifolds equipped with the canonical symplectic structure -
the so-called Kirillov-Kostant-Souriau form. Moreover, for compact K, coadjoint orbits can
be identified with adjoint orbits by means of K-invariant scalar product on £. Therefore in
the following we will always treat p as the map from M to € rather than *.

4.2.2 The momentum map in many particle quantum systems

In publications [1-6] we consider the following spaces M of states:

1. The complex projective space P(H), where:
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() H=H1@H2®...®Hr, Hiis an N;-dimensional Hilbert space of i-th particle -

pure states of L distiguishable particles with a natural actions of K = SU (N7) x
. x SU(Np), G = K€ = SL(N;,C) x ... x SL(N,C) and Lie algebras t =

su(N) & ... ®su(Ng), g=sl(N;,C) e ... & sl(Ng,C).

(b) H = STH,, H, is a Hilbert space of a single boson - pure states of L d-state bosons
with the diagonal actions of K = SU(d), G = K® = SL(d,C) and Lie algebras
t = su(d), g = sl(d,C).

fe] H = A ., Hi is a Hilbert space of a single fermion - pure states of L d-state
fermions with the diagonal actions of K = SU(d), G = K® = SL(d,C) and Lie
algebras € = su(d), g = sl(d, C).

2. Isospectral denisty matrices @, for the system of two distinguishable particles described
by Hilbert space H = Hy ® Ha, with the adjoint action of K = SU(N;) x SU(N,) and
Lie algebra € = su(Vy) @ su( V).

All the above given spaces are Kihler manifolds so in particular they are symplectic manifolds.
The formula for the symplectic form at a point [v] € P(H) or o € O, is given by:

—i{v|[§1, &2]v) 1

2(v|v) w(é,6) = %TT(U[EL&]), g et (1)

W(él;é?) =

respectively. The momentum map p : P(H) — € is given by:
1. Pure states of L distinguishable particles:

%
M

L

Ty pa(1) = - T pu]) = -

No INL}J (2)

1
u(lo) = ~or (4]
where p;([v]) is the i-th reduced one-particle density matrix of a state [v] € P(#) and
Iy, is the identity operator on the N;-dimensional Hilbert space H;.

9. Pure states of L d-state bosons or fermions: p([v]) = £(p1([v]) — 31), pa([v]) is one-
boson /one-fermion reduced density matrix.

4.3 K-equivalence of quantum states

Publications [4,5,6] concern the problem of the local unitary equivalence of pure guantum
states. Two states are called local unitary equivalent (K-equivalent) if they can be connected
by K-action. The aim of the work [4,5,6] was to investigate when the K-equivalence can
be solved using only the momentum map and for cases when it is not possible to identify
a physical reason of this inability and check how much information is missing. Note that
in all the considered systems the momentum map is directly related to the operation of
partial trace and therefore to 1-particle reduced density matrices. We can thus say that
publications [4,5,6] examine the role of 1-particle reduced density matrices in the problem of
K-equivalence.

Note that since K is a compact group the K-orbits are closed. In order to check if
two states belong to the same K-orbit it suffices to find (the finitely generated [52]) ring of
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K-invariant polynomials, i.e. polynomials that are constant on K-orbits. Let us recall that
the group K also acts on its Lie algebra through the adjoint action. The existence of the
equivariant momentum map 4 : M — € guarantees that K-orbits in the space of states
M are mapped by u onto adjoint orbits in €. Therefore, if p : £ — R is an Adg-invariant
polynomial on £ then the composition po p : M — R is a K-invariant polynomial on M.
Adyyy-invariant polynomials are known. They are given by {TrX 2 TrX3,..., Tr XV}, where
X ¢ su(N). The Lie algebras considered in [4-6] are either the special unitary Lie algebra
su(d) (for d-level bosons and fermions) or the direct sum of special unitary Lie algebras
£ = su(N;) @ ... ®su(Ny) (for L distinguishable particles). Combining this with the fact
that the momentum map is given by reduced one-particle density matrices we get that traces
of their powers are K-invariant polynomials on M. If the momentum map has a property
that the pre-image of every adjoint orbit from p(M) C £ is exactly one K -orbit in M, then the
K -invariant polynomials on M and Adg-invariant polynomials on £ are in 1-1 correspondence
(given by p). Let us note that for X € su(NN) the values of Adg,(y)-invariant polynomials
at X determine the spectrum of X (coeflicients of the characteristic polynomial for X are
expressible in terms of traces of powers of X). Therefore the K-equivalence of two states
in M can be checked in this case by comparing spectra of their reduced one-particle density
matrices. Typically this is not the case and many K-orbits are mapped onto one adjoint
orbit in (M) C €. As a direct consequence, for two states whose reduced one-particle
density matrices have the same spectra we need additional K-invariant polynomials to decide
their K-equivalence. This kind of polynomials were found for some low-dimmesional systems
[16, 45, 66, 69]. Thus in [4-6] we focus not on finding K-invariant polynomials that typically
have no well defined physical meaning, but on the geometric properties of the considered
problem. In the following sections we describe problems solved in [4-6].

4.3.1 The role of sphericity in K-equivalence

As we already pointed out in the previous section, the situation when the set of K-invariant
polynomials on M is given by the composition of Adg-invariant polynomials on € with the
momentum map g : M — £ occurs only when the pre-image of every adjoint orbit from
(M) C & is exactly one K-orbit in M. Let us denote by JF, := pu~'(u(x)) the fibre of the
momentum map g over u(z) € €. The position of F with respect to the orbit K.z is of the
key importance for the above situation. Orbits of K in M are in 1-1 correspondence with
the adjoint orbits in p(M) if and only if the fibres F, are contained in orbits K.z. It is easy
to see that T, F, C (T.K .x)LW which means that if K.z is coisotropic then F, is contained
in it. In order to characterise all systems for which K-equivalence can be decided using p we
need to identify those whose (at least) generic K-orbit is coisotropic. As it turns out, such
systems need to satisfy some group theoretic conditions which we analyse in [6].
Interestingly, it is crucial for the considered problem to study not only the action of K&
but also its complexification G = K©. Note that since K is a maximal compact subgroup of
G, the group G is reductive. An important example of the reductive group is G = SLy(C)
which is complexification of its compact subgroup K = SU(N). By this example groups
G considered in [6] (and introduced in section 4.2.2) are reductive. Note that the group
(3 is much bigger than K and therefore the number of G-orbits is smaller than nuber of
K-orbits in M. If G has an open dense orbit = G/H on M then we call M an almost
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homogenous manifold [34]. In particular such M has a finite number of G-orbits. The
preliminary considerations contained in [6] lead to the conclusion, that almost homogeneity
of M with respect to G-action is a necessary condition for deciding K-equivalence using the
momentum map. It is, however, not a sufficient condition which can be seen on the example
of three-qubit system, where there are exactly 6 orbits of G = SL(2, C)*? action [20], but
states z; = \/g{OOO) + %Illl) and 7, — \/ig (]000) + [010) + |001)), where {|0}, |1)} C C? is
an orthonormal basis in €2, satisfy p(z;) = p(z2) and are not K-equivalent as they belong
to different G-orbits [20].

An important role in the formulation of the sufficient condition is played by the Borel
subgrup of the group G. Let us recall that by definition a Borel subgroup B is a maximal
connected solvable subgroup of the group ¢i. For example, for G = SLy(C), the group of
upper-triangular matrices, that is a stabilizer of the standard full flag in (i

0 C Span{|1)} C Span{[1),]2)} C ... C Span{|1),...,|[N-1)} C Span{|l),...,|\N}}=H,

is an example of a Borel subgroup. Generally, any two Borel subgroups are conjugated by an
element of (7. Therefore, in the considered example, B is a Borel subgroup of 7 if and only if
it, stabilises some standard full flag. The crucial notion for the K-equivalence problem is the
notion of a spherical space. G-homogenous space () = G/H is a spherical homogenous space
if and only if some and therefore every Borel subgroup B C G has an open dense orbit in €.
If G has an open dense orbit = G/H in M and  is a spherical homogenous space then
M is the spherical embedding of @ = G/H. Such M is also called an almost homogenous
spherical space. The momentum map separates K-orbits on almost homogenous spherical
spaces. This is a conclusion from the Brion theorem [13], which says:

Theorem 1 (Brion) Let K be a connected compact Lie group acting on a connected comn-
pact Kihler manifold (M, w) by o Hamiltonian action and let G = K C. The following are
equivalent

1. M is a spherical embedding of the open G-orbit.
2. For every x € M the p-fiber p 1 (u(x)) s contained in K.x.

In [6] we use Brion’s theorem and show that the open dense orbit of the Borel subgroup exists
only for systems of two fermions, two bososons and two distinguishable particles. Therefore,
these are the only systems for which K-equivalence can be decided using reduced one-particle
density matrices.

In the second part of [6], for systems satisfying conditions of Brion’s theorem, we describe
geometric structure of K-orbits. Adjoint orbits are symplectic manifolds. K-orbits in M
typically are not symplectic. The reason for this is vanishing of the symplectic form on the
tangent space to the momentum map fibers that are contained inside K -orbits. Thus on K-
orbits we have only a partial symplectic structure. We can describe this partial structure as
by Brion’s theorem the momentum map p : M — £ parametrises K-orbits in M in the sense
that it bijectively maps the set of K-orbis in M onto K-orbits in (M ). The image is given
by K.P where P is a convex subset of the Cartan subalgebra t C . In [6] we describe P as a
probability polyhedron. We also find a real algebraic set Yf in M, defined by linear algebraic
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equations and inequalities, that parameterizes the K-orbits in M and that is mapped onto
a fundamental region of the Weyl-group in P by the momentum map. Every element z of
%4 determines in a simple way a vector d = (dy, ..., dy) of positive integers that completely
determines the momentum map image u(z) as a flag manifold F'(dy, . . ., di). We also exactly
describe the fiber F, = p~'(u(z)) of the momentum map. It is the fiber of the homogeneous
fibration K/K, — KK, which in fact (up to very simple finite-coverings) is a product of
certain symmetric spaces. In the case of bosons it is the product of a torus and a number
(depending on d and the degeneracy) of symmetric spaces of the form SU,,/SO,,. The case
of fermions is analogous, except that the symmetric spaces are of the form SU../USp,,-

4.3.2 Exceptional states, sphericity and K-equivalence

In the previous scction we gave necessary and sufficient conditions for deciding K-equivalence
of pure states using only the momentum map. It was the requirement that the space of
states M is a spherical embedding of G = K®-homogenous space. In [5] we show that the
existence of the so called exceptional states in M is an obstacle for sphericity of M. As
we prove, exceptional states exist in P(#) for all considered systems of distinguishable and
indistinguishable particles except the case when their number is Li=2.

In order to define the notion of an exceptional state we [irst need to say what are the
rank and the border rank [46] of a state in M. The rank of a state is defined with respect
to Perelomov coherent states [58] X of K-action on M. For distinguishable particles X is the
image of the Segre map given by Segre : P(H1) x...xP(H.) — P(H), which has the following
action ([v1], .., [vr]) — [v1 ® ... ® v]. Thus elements X are states corresponding to simple
tensors. For bosons X is the image of the Veronese map: Very, : P(#;) — P(#), which acts
as [v] — [v%], and for fermions X is the image of the Pliicker map Pl : Gr(L,H,) — P(H),
which has the following action U — [ug A... Auy], where uy, ..., ug is a basis in UU. The rank
of a state is defined as

tk[t)] = rkx[¢| = min{r e N:¢p =z, +--- + z» where [z;] € X} . (3)

The set of states of rank r will be denoted by X, = {[2/] € P(H) : tk[¢)] = r}. It is easy to see
that X, is not closed (in Zariski topology) as we have X C X, and X ¢ X,.. The secant variety
of rank r, 0.(X) is a variety that contains the closure of all sets of states of rank at most 7:
o.(X) = || X, C P(H) and is a well defined algebraic variety. It turns out that one can have

s<r

states & € P(7{) of the certain rank r that can be approximated with an arbitrary precision
with states of strictly lower rank. For any state [¢] € P(H) we define its border rank with
respect to X as rk[t)] = rkg[¥] = min{r € N : [¢] € X, }. States satisfying rk[¢] < rk[¢] are
called ezceptional states. Exceptional states turn out to be closely connected to sphericity.
In [5] we show that for a projective space P(H), which is a spherical almost homogenous
space (not only for many (in)distinguishable particles), there are no exceptional states. More
precisely

Theorem 2 Let G — GL(H) be an irreducible representation of a reductive complex Lie
group G, such that the action of G on P(H) is spherical. Let X C P(H) be the closed G-orbit.
Then rank and border rank on P(H) with respect to X coincide, i.e.

rky[1)] = rhy[1] ,
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for all Y] € P. In other words, there are no exceptional states in P(H).

The proof of this theorem is based on the classification of spherical representations of
reductive groups given by Knopp [42].

Therefore, in order to show that a lack of exceptional states in P(H) is equivalent (for
considered many particle systems) to sphericity we need to prove that exceptional states exist
always when the number of particles L is grater than 2. An example of an exceptional state
is the 3-qubit state |W) = —=(|001)+]010) +[100}). To see this let us consider one-parameter
group given by . .

A(a)zl(a+a . BB ) aeCx,

2\a—a a—+a !

which can be rewritten as

0 1 (1 -1
4(0) = o, where 450 = (§ ) €€L(0), 90 = 5 (1 ') €500,
a—{)

As we show in [5] we have the following convergence in P(H): A(a)®*[|000) + [111)] —
g2*7|011) + |101) + |110}]. The state |goV¥) and therefore also [W) can be approximated by
states of rank 2. But the direct calculations show that |W) has rank 3. Thus [W) is an
exceptional state. As we show in [5], the existence of exceptional states for 3 qubits implies
their existence for pure states of [ > 3 distinguishable particles. Similarly, we prove (using
results contained in [18] and [15]) that their existence for three bosons and three G-state
fermions (here we use [36]) imply their existence for pure states of L > 3 indistinguishable
particles. The main theorem of [5] reads:

Theorem 3 Suppose that we have one of the following three configurations of a state space
H, a complez reductive Lie group G acting irreducibly on H, and a variety of coherent states
X C P(H), which is the unique closed G-orbit in the projective space P(H).

{i) Hp=H1®..@ HL, GD = GL('Hl) K el GL(HL), X= Segre(]P’(?—Ll) HKownw K P(HL))

(11) %B — SL(H:[), G = GL(Hl), X= VQIL(P(%l)).

(iii) Hp = A" Hi, G = GL(H1), X = PIGr(L, H1)).
Then the action of G on P(Hpr) (resp. Gp on P(Hp)) is spherical if and only if there
are no exceptional states in P(Hpr) (resp. P(Hp)) with respect to X. In other words,
sphericity of the representation is equivalent to the property that states of a given rank cannot
be approzimated by states of lower rank.

Combining this theorem with the results described in the previous section we get the main
result of [5] saying that the existence of exceptional states is an obstacle for deciding K-
equivalence of states using the momentum map.

4.3.3 Symplectic reduction and K-equivalence

As we have discussed in the previous sections, the two-particle case (L = 2) is the only
situation, when the space of pure states is a spherical variety, or, equivalently, when there
are no exceptional states. For such quantum systems the K-orbits in M are in the one-to-
one correspondence with the adjoint orbits in p(M) C €. The problem of K-equivalence of




quantum states is then completely solved by considering the image of the momentum map. In
other words, it is enough to compare the spectra of the one-particle reduced density matrices,
or the values of polynomials p; : € — R, which are invariant with respect to the adjoint action.
Such polynomials are given by the traces of powers of the one-particle density matrices. When
L > 2, the knowledge of the adjoint-invariant polynomials {p;} is not sufficient for solving
the K-equivalence problem. However, the condition p(K.|¢)) = u(K.|$}) is necessary for the
K -equivalence of states [¢] and [)]. The momentum image pu(M) consists of adjoint orbits
in £. Each adjoint orbit intersects the Cartan subalgebra t at a finite number of points, that
are connected by the action of the Weyl group. Let us denote by t; C ¢ the positive Weyl
chamber and let ¥ : M — t. be the map that satisfies U(|¢)) = u(K.|¢)) Nt.. In the
considered quantum systems, map U assigns to a state ¢ the ordered spectra of the (shifted)
one-particle reduced density matrices. By taking the intersection of p(M) with the positive
Weyl chamber, t, C t, one obtains the set W(M) = p(M) N L, that parametrises adjoint
orbits in (M) C & [24]. The celebrated convexity theorem of the momentum map [8, 25, 38|
states that (M) is a convex polytope, which is also referred to as the Kirwan polytope. The
necessary condition for states [¢] and [¢h] to be K-equivalent, can be therefore formulated
as U([¢1]) = U([pa])- As we show in [4], for L-qubit states that satisty the aforementioned
necessary condition, the number of additional invariant polynomials strongly depends of the
spectra of the one-qubit reduced density matrices, i.e. on the point in the polytope W(NM).
For oo € W(M), the number of additional polynomials is given by the dimension of the reduced
space M, = U~1(a)/K. In [4] we analyse dimp ¥~ («)/K for an arbitrary oo € U(M).

Inequalities that describe polytope W(M) for a system of L qubits, are known [31]. Denote
by {p;, 1 — p:} an increasingly ordered spectrum of the i-th reduced density matrix and by
); the shifted spectrum, X; = § — p;. Then, ¥(M) is given by 0 < A < tand (3 —X) <
> in (2 — ;). Methods that we use in [4] to compute the dimensions of spaces M,, are
different for points o belonging to the interior of ¥ (M) and for points from the boundary of
the polytope. For more than two qubits, the polytope is of full dimension, hence a generic K-
orbit in the space of states M has the dimension of K [64]. Using the regularity of u [29, 49]
we get, that for points « from the interior of the polytope the dimension of the reduced space
reads:

dimM,, = dim(¥~}(a)/K) = (dimP(H) — dim¥(H)) — dimK =
=((2**' -2) — L) —3L=2""—4L -2 (4)

Points belonging to the boundary of (M) can be grouped into three classes: (i) k of \; are
equal to 3, (ii) at least one of inequalities (% —-N) <3 i (32— - )\j) is an equality, (iii) k
of \; are equal to 0. In case (i), inequalities that yield ¥(M) reduce to an analogical set of
inequalities for the (L — k)-qubit polytope. Therefore, dimM, = ((287#1 —2) — (L —k)) —
3(L—k) = 28-F+1—4(L—k)—2. States that are mapped to points that fall into case (ii) belong
to the K C-orbit through the L-qubit W-state, [W] = [01...1)+[101...1)+...+|1...10) [4].
As we showed in [64], the closure of such an orbit is an almost homogeneous spherical variety.
Therefore, fibers of the momentum map are contained in K-orbits, i.e.dimM, = 0. Case
(iii), where k of A, are equal to 0, is the most difficult one, as it requires the use of some more
advanced tools from the Geometric Invariant Theory (GIT) [52]. In the GIT-theory a key

role is played by stable states [52, 53], i.e. states for which p([¢]) = 0 and dimK |¢) = dimK
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[39]. For a symplectic action of a compact group K the existence of stable states implies
that i~1(0)/K = dimP(H) — 2dimK, where fi is the momentum map for the K-action. The
strategy for case (iii) is the following. As we point out in paper [4], group K can be divided
into K = K; x K, where K = SU(2)**, K3 = SU(2)*£"% and K, acts on the first k
qubits. The symplectic action of K, yields the momentum map, which assigns to a state
its first k& one-qubit reduced density matrices. Therefore, yi;*(0) consists of states whose
first k& reduced density matrices are maximally mixed, while the remaining (L — k) reduced
matrices are arbitrary. In paper [4] we also construct a state that is GIT stable with respect
to the action of K€ on P(H). Hence, dimp;'(0)/K; = dimP(H) — 2dimK; = 2L+l _ 6k — 2.
Furthermore, the quotient g7 *(0)/K; is a symplectic variety itself. Because the actions of K
and Ko commute, we can consider the action of K3 on p;'(0)/K,. The momentum map for
K5 acting on py ' (0)/K,; gives the remaining L — k one-qubit reduced density matrices. The
polytope of Wy is of full dimension, i.e. of dimension 7, —k. By the formula for the dimension
of the reduced space for points from the interior of the polytope, we get:

((dimp7}(0)/K:) — (L —k)) — dimKp = (25! — 6k — 2) — (L —k)) —3(L — k)
L | P

which is the desired result for case (iii).

VB1

(@) (b) (©)

Figure 1: The three parts of the boundary of ¥(IP(7{)) for four qubits. The numbers denote
dimM,,. If the number is missing, then dimM, = 0.

4.4 KC-equivalence of quantum states

Another fundamental problem in the theory of quantum correlations is the classification of
states under SLOCC (Stochastic Local Operations and Classical Communication) operations
[68]. This classification is still not fully understood. For the considered multipartite systems
reversible SLOCC operations correspond to elements of the complexification G = K C of
the local unitary operations group K [41], and two states are G-equivalent if and only if
they belong to the same G-orbit. Recall that the problem of K-equivalence is solvable by
means of K-invariant polynomials. As the group G is reductive, the Hilbert and Nagata
theorem [52] ensures that the ring of G-invariant polynomials is finitely generated. However,
the problem of G-equivalence turns out to be significantly different from the problem of K-
equivalence. As we note in [3] the essence of this difference is the fact that the group G

11
i)
/




is not a compact group, and thus G-orbits do not have to be closed. For two vectors ¢;
and ¢, satisfying G.¢1 N G.¢y = 0 we can have G.d; N G.¢y # 0. Note that G-invariant
polynomials are continuous functions and therefore they are not able to distinguish between
orbits G.¢, and G.¢,. It is only possible to distinguish between orbits whose closures have
non-empty intersection, in particular between closed G-orbits. The orbit space M/G, i.e.
the quotient space resulting from dividing the state space by the action of the group G, is
not a Hausdorff space - not every pair of points is separated by open sets. Therefore, the
problem of the G-equivalence of states requires, above all, understanding the structure of the
orbit space resulting from the action of a non-compact reductive group on a vector space H
(equivalently on the projective space P(H)).

Two orbits of G.¢ and G.% in 7 are called c-equivalent' iff there exists a sequence of
orhits G.¢ = G.vy, G.vg, ..., G.u, = G.p such that G N Gugyer # 0. The relation of
c-equivalence divides G-orbits into equivalence classes (c-classes). It turns out, that in fact,
every c-class contains exactly one closed G-orbit, which is contained in the closure of every
G-orbit belonging to the considered c-class. The dimension of this orbit is the smallest in
the whole c-class. C-equivalence classes are therefore parameterised by closed G-orbits and
G-invariant polynomials distinguish between G-orbits belonging to different c-classes [52]. In
the next paragraphs we focus on the construction of the quotient space with respect to the
c-equivalence relation.

Among all c-classes we distinguish those corresponding to the zero vector - they form the
so-called null cone [54]. This class must be removed if we want to consider the quotient space
at the projective level. After removing from the projective space P(H) points corresponding
to vectors from the null cone we are left with semistable points P(H)... Two points 1,z €
P(H),s are c-equivalent if there are vectors of vy, v, € H, such that z; = [1] and x5 = [vs]
and on the level of the Hilbert space G.v; N G.vg # 0. The quotient space obtained from
the semistable points hy c-equivalence relation is denoted by P(H).s / G and is a projective
algebraic variety. It is known in the literature under the name GIT quotient® [53] and we will
call it GIT space. Points of the GIT space correspond to c-classes of semistable points and are
in one-to-one correspondence with closed G-orbits. So far, we have not used the momentum
map. It turns out that every closed G-orbit in P(H)ss contains exactly one K-orbit from
©~1(0) [37]. Therefore we get the following equivalence p="(0)/K = P(H)s [ G.

The set of closed G-orbits is given by the action of G on p(0), i.e. G.u*(0). Among the
semistable points we distinguish the so-called stable points P(H), = {z € P(H),, : dim G.o =
dim G and G.z N p~(0) # 0}. The existence of a single stable point makes (), an open
dense subset of P(H),s, i.e. almost every semistable point is stable [53, 50]. For the stable
point = € P(H), the c-equivalnce class consists of exactly one closed G-orbit. For semistable
but not stable points this class always consists of an infinite number of G-orbits.

Vectors belonging to the null cone, i.e. c-class whose closed G-orbit is the zero vector,
may represent important states from the point of view of quantum correlations. For example,
states |W) = 1/4/3(|001) + |010 + |100}))) and separable states belong to the null cone but
their quantum properties are significantly different. Therefore we need a finer procedure
dividing G-orbits, one that includes the GIT construction and also provides mathematically

'From closure equivalent.
2Geometric Invariant Theory
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Figure 2: The idea of the categorical quotient construction, i.e. u~'(0)/K = P(H)ss [/ G.

and physically well-defined stratification of the null cone. A key role is played here by the
function ||g||? : P(#) — R. This function has a clear physical interpretation. According
to the definition of Klyachko [41] the total variance of state [v] € P(H) with respect to the
symmetry group K C SU(#H) is given by

dim K dim K

Var((u]) = 7 (_Z leh) — o O <v|fi|'u>2) —c— 4l @), 6)

where & is an orthonormal basis of algebra £ and c is a [v]-independent constant. The
function || 11||* ([v]) can be also expressed as the expectation value of the Casimir operator C; =
S 8im K ¢2 |11, 27] which acts on Sym®H [57]. In this case we have Cy = SR (ERI+IRE)?
and W(u Rv|CYlv@v) =2c+8 21 ([0]). Finally, ||pz]|® is directly related to the linear
entropy which is a linear function of the total variance.

A point [v] € P([v]) is a critical point of ||u||* if it is a solution of the eigenproblem
w([v])v = Av |3]. Critical points of [|u||* can be therefore divided into two categories. The
first includes all K-orbits belonging to p~'(0). These are called minimal critical points and
for them ||p||? reaches a global minimum. The minimal critical points correspond to states
with maximum total variance and maximum linear entropy. The other critical points are
given by some K-orbits in the null cone. For these points p([v]) # 0 and u([v])v = Av.
Therefore, in the null cone we distinguish G-orbits passing through the critical K -orbits.

The relationship between critical points of [|u||®, c-equivalence and GIT construction
becomes clear if we consider the gradient flow of —||u||? [54]. The gradient of —||u|? is well
defined as the projective space P(H) is a Kéhler manifold, and therefore in particular have
a well defined metric. The gradient flow is tangent to G-orbits and carries points towards
critical K-orbits. Two points 1,7y € P(H)ss are equivalent from the point of view of the
gradient flow if they are taken by it to the same critical K-orbit. This definition is consistent
with the c-equivalence definition. However, it is at the same time more general because it
allows an extension of the concept of equivalence to the null cone. The situation in the null
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cone is more complex as the critical K-orbits not need to be in one fiber of ¥ (recall that
U : P(H) — € is given by ¥(|¢)) = u(K.|#}) Nt.). Nevertheless, the polytope ¥(IP(#)) has
a finite number of points {o;} for which ¥~'(o;) contains critical K-orbits. Let C, denote
the set of critical K orbits mapped by ¥ on « € t; and N, be the set of all the points that
are taken by gradient flow of —||u|® to C,. The quotient space N, // G, obtained from N, by
dividing N, by the equivalence relation induced from the gradient flow, and the space C, /K
are isomorphic (see Figure 3). Moreover, they are projective algebraic varieties. It is worth
noting that the above discribed construction is analogous to the GIT one. For o = 0 we get
that Ny = P(H)ss and Cy = p1(0). Using the so defined quivalence relation we can think
of a quotient space P(H) by G (abusing notation: P(7{)/G) as of the space consisting of a
finite number of projective algebraic varieties:

P(H)/G 2| N, | G =] Cu/K. (6)

The map V¥ has another important property, namely not only ¥(P(H)) is a convex poly-
tope but also the image of every G-orbit ¥(G.z) has this property [13]. A finite number of
varieties C, /K is the result of the fact that N, can be equivalently defined as those z € P(H)
for which polytopes ¥(G.z) share the nearest point to the origin. But the momentum map
convexity theorem for G-orbits ensures that the number of such polytopes is finite [23], so
the number of manifolds C,, is also finite. Summing up we get the following correspondence:

Table 1. A dictionary
G-orbit SLOCC class of states
the momentum map | the map which assigns to a state [v] the collection of its
reduced one-particle density matrices

el 2 ([w]) the total variance of state Var([v]), linear entropy

closure equivalence | family of asymptotically equivalent SLOCC classes

class of orbits

stable point SLOCC family consists of exactly one SLOCC class

semistable but not sta- | SLOCC family consists of many SLOCC classes

ble point

(G [v]) SLOCC momentum polytope, collection of all possible
spectra of reduced one-particle density matrices for [u] €
G.[v]

strata N, group of families of SLOCC classes - all states for which

SLOCC momentum polytopes have the same closest
point to the origin

Cy set of critical points of Var([v]) with the same spectra
of reduced one-particle density matrices

The space IP(H) can be also divided into a finite number of generalized SLOCC classes
using polytopes W(G.z), which in [70] are called entanglement polytopes. This is done
by saying that two stales are equivalent when their entanglement polytopes are the same.
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K.«a

Figure 3: The sets N, and C,, with two exemplary critical K-orbits, K.z, and K.z2. The
arrows represent the gradient flow of —||u||%.

Decomposition (6) is identical with that division up to the existence of polytopes that have
a common closest point to the origin.

The key ingredient needed to obtain decomposition (6) is the knowledge of the critical
K-orbits of [|u||*. In [3] we find them for two distinguishable and indistinguishable particles,
three qubits and any number of two-state bosons. For four qubits we show that most classes
found in [67] are c-equivalent with the class corresponding to ' (0). Calculations of critical
points presented in [3] have been made by a direct application of the definition of a critical
point of ||¢||?, i.e. by solving the eigenproblem u([v]).v = Av. Note that in this equation
the matrix u([v]) depends in a nonlinear way on the vector [v]. The above mentioned cases
are the only ones for which direct application of the definition allows easy calculation of the
critical points.

4.4.1 Critical points of ||p||? for many qubits

As we have seen in the previous section, the critical points of ||u|[?, or of the linear entropy,
play a key role in understanding the generalised SLLOCC classes. Finding the critical states
by direct application of the definition is a computationally difficult task, as it requires solving
an eigenproblem for a matrix, depending nonlinearly on a vector it acts on. In paper [1| we
propose a more tractable method that is based on an interplay between momentum maps for
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abelian and non-abelian Lie groups.

For a compact group K, we denote by T its maximal torus, which is a maximal compact
and connected abelian subgroup. For example, when K = SU(N), a maximal torus consists
of unitary diagonal matrices with the determinant one. A momentum map ur : M — t for
the action of 7" on M is given by the composition of p : M — ¢ with the projection on
the Cartan subalgebra t = Lie(T). Therefore, we have u([v]) = pr([v]) + o, where o € t.
By the convexity theorem, pr(M) is a convex polytope. For abelian groups, the convexity
theorem specifies the vertices of the polytope [8]. The vertices are given by the set of weights
A = pp(My), where My are the fixed points for the action of 7" on M 3. The critical points
of ||pr||?, must satisfy a similar condition as the critial points of || gl ie. pr(v])v = Av.
Therefore, for 3 € pp(M) a point [v] is a critical point iff 5.v = Av, i.e. [v] is a fixed point
for Ty = {e*’ : ¢+ € R} and pr([v]) = 8. The fixed-point set Mz, for the action of T is not
a symplectic variety. However, weakening the definition of My, by demanding points [v] to
satisty (ur([v]), 8) = (B, 8) instead of being mapped to 3, we get a symplectic variety Zg.
Points from Zs are sent by pr to the hyperplane that is perpendicular to £ and contains
5 [39]. Clearly, My, C Zg. The set Zg is a T-invariant symplectic variety, hence, by the
convexity theorem, we have that pr(Zg) is a convex polytope, which is spanned by a subset
of weights from A. The definition of Zg implies that § is the closest to zero point of this
polytope. In other words, [v] € M is a critical point of ||ur||® iff it is mapped to a minimal
convex combination of weights, 8, and [v] € Z5 [39].

VSEP

Figure 4: Minimal weight combinations for three qubits. Point vggz is the image of state
|GHZ) = % (|000) + |111)), pionts vp; correspond to the biseparable states and |pw) =
% (]110) + |101) + |011}).

Function [|u]|? is K-invariant, therefore we can restrict our consideration to critical points
satisfying p([v]) € t,. For such states we have p([v]) = pr([v]) and [v] is a critical point of

3A point z € M is fixed by the action of T iff Vit € Tt.x =z
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[|||? iff it is a critical point of ||ur]|%. Let us denote by B the set of all minimal combinations
of weights from A that belong to t,. Then, a state [v] is a critical one if and only if u([v]) € B
and [v] € Zs. Critical sets are therefore of the form Cp = K.(Zs 0 p~'(8)), where § € B.
In our work [1] we apply the above reasoning in order to compute the critical points of the
linear entropy for pure states of L qubits. Set A is the image under p of the basis states
B = |i1,...,i5), where ig € {0,1}, hence #A = 2L We discuss the algorithm of finding the
minimal combinations of weights and list the results up to L = 5 (the construction of the set
of minimal combinations of weights is shown on figure 4). We also show that for g € B, the
set Zz = P(S), where S is spanned by the basis states whose weights span 3. Moreover, we
show when sets Cz are nonempty and for each 5 € B we describe a construction of a state
that is mapped to 8. We conclude that the number of critical values of the linear entropy
grows super-exponentially with L.

| Critical a € U(P(H)) State | () |
=D 10 -1 0
2 2 2
(0 3)-( 1) () =L
- — T 00 00 .
2 2 A,
(G ) (3 ) (00)(o0) | mse |
—% 0 *% 0 "% 0 _% U lW(3)>®|1> 1
; %07 ; éoj ?)0% ’ 0 o% 3
L 0 -
2 : 3
( %)’(0 0)’(0 o)’(o 0) ol 8
Gra) (o) G i) (v )
1 4 4 4 W 3
o )0V o /)00 7)) i :
w5 61 —1 40 —140 —l40 9
10 , 10 1 5 , 5 P =
EHIEIECHICHIINT
FOENED G T |
1 1 g & 00 gz
= 06) (-L oﬁ> (~L 0 (—l 0 .
14 . 14 ; 14 p ; 7 o) 2L
0 %0[ 0 & 0 & 000 - ' %
0 0 0 0 1
(60) (o) (o) (80) | o= |

Table 2: One-qubit reduced density matrices for critical states of four qubits. The listed states
are: |TriSep) = %}11) ® (|00) + |11)), |BiSep) = —|1) ® (|000) + [111}), W) = 5(1110) +
[1101) + [1011) + [0111})), |Ds) 2(]1101) + [1110)) + \/gloon), |®y) = 2—\1/—501011) +
|1110)) — 1(0101) + [0011)) + [0110), @) = \/;3;00011) +[0101) + |1001)) + 1/ Z1110),

|GHZ) = —5(|0000) + |1111)).

4.5

In previous chapters we discussed applications of the momentum map in two significant
problems of the theory of quantum corellations: K and K € equivalence of pure states. Mixed

)

Geometric and topological characterization of C'() and CC sates
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states are subject of publication [2], where we discuss geometric and topological aspects
of quantum correlations that exist for separable (non-entangled) states. The existence of
quantum correlations for multipartite separable mixed states can be regarded as one of the
most interesting quantum information discoveries of the last decade. In 2001 Ollivier and
Zurek [56] and independently Henderson and Vedral [30] introduced the notion of quantum
discord as a measure of the quantumness of correlations. Quantum discord is always non-
negative [19]. The states with vanishing quantum discord are called pointer states. They
form the boundary between classical and quantum correlations [19]. Bipartite pointer states
can be identified with the so-called classical-quantum, C'Q states [19]. An important subclass
of CQ states are classical-classical, CC' states [43].

For H = Ha® Hg, where Hy = CY1 and Hp = CM a state is CC if it can be written as
p =i ;Pijlt)i| @7}, where {|i)}, is an orthonmmal basis in H 4 and {|j}} 2, inHp. A
state p is a CQ state if it can be written as p = 3, p|i)(i| ® p;, where {p;}12, are the density
matrices on Hp. Both classes are of measure zero in ‘H [21]. For pure states, separable
states are exactly zero-discord states. It was shown in [63] that pure saprable states are
geometrically distinguished in the state space and belong to the unique symplectic K-orbit
in P(H). For mixed states, already for two particles it is easy to see that there are infinitely
many symplectic K-orbits and there are separable states through which K-orbits are not
symplectic. Thus a simple extension of the results of [63], even for two-particle mixed states
is not possible. In [2] we show four facts that are geometric and topological characterisations
of CC and CQ states that extend results of [63] to mixed states: (1) the set of C'Q) states
is the closure of all symplectic orbits of K = SU(N;) x Iy, action, (2) the set of C'C states
is the closure of all symplectic orbits of K = SU(N;) x SU(N3) action, (3) the set of C'Q
states is exactly the set of K = SU(N;) x Iy, orbits whose Euler-Poincaré characteristics x
do not vanish, (4) the set of C'C states is exactly the set of K = SU(N;) x SU(N,) orbits
whose Euler-Poincaré characteristics x do not vanish.

The space of all density matrices is not a symplectic space (the symplectic form is degen-
erate). Nevertheless, the set of density matrices with the fixed spectrum O,, which is the
adjoint orbit of SU(H) through p is symplectic. Therefore, the action of the above given
groups K on @, leads to existence of the momentum map p: O, — £ [24]. In order to check
if a given orbit K.o (the action of K on o € O, is the adjoint action) is or is not symplectic it
is enough to consider the restriction of the momentum map p to K.o. Then K.o is symplectic
if this restriction is bijective. The computational conditions for y to be bijective are given
in the Kostant-Sternberg theorem [44] which we used in publication [2]|. Let us note that
since K.p is mapped by p onto adjoint orbit in £, non-symplecticity of K.p (the degeneration
of symplectic form on K.p) can be measured as D(K.p) = dim K.p — dim Adgp(p). For
two qubits the C'C states, in a fixed basis, form a 3-dimensional simplex and therefore it is
possible to see how the closure of the symplectic K = SU(N;) x SUN, orbits forms the set
of CC states (figure. 5, 6 and 7). In [2] we also discuss existence of Kéhler structure and
show that it is present on all considered symplectic K-orbits.

For finding Euler-Poincaré characteristics ¥ we use the Hopf-Samelson theorem [32]. This
theorem says that for action of a compact group K on a manifold M the Euler-Poincaré
characteristics x of the orbit K/K, passing through x € M is given by:

1. If the maximal torus T of K is contained in K, then x(K/K,) = L , where Wi and
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Wy, are Weyl groups of K and K, respectively.
2. Otherwise, x(K/K,) = 0.

In publication [2] we show that orbits of the discussed groups through CC and CQ) states are
the only orbits with stabiliser subgroups containing maximal torus. We also calculate ranks
of the Weyl groups and obtain formula for x.

Ey @ En

Eg v.:JE--z

Figure 5: Dimensions of orbits through C'C' states of two gbits. The large dot: dim K.p = 0,
the dotted lines: dim K.p = 2, elsewhere: dim K.p = 4.

Ey @ Ey

Ey @ Eg

Figure 6: Ranks of w|, , for orbits through CC states of two gbits. The thick dashed line:
rk wly , = 0, the lined surfaces: rk w|g, = 2, elsewhere: rkw|g , = 4.
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Figure 7: Degrees of degeneracy of w|y , for orbits through CC states of two gbits. The thick
dashed line: D(K.p) = 4, the lined surfaces: D(K.p) = 2, the dotted lines and elsewhere:
D(K.p)=0.

5 Discussion of other scientific accomplishments

My other scientific accomplishments concern: (1) scattering from isospectral graphs, (2) clas-
sification of abelian quantum statistics on quantum graphs, (3) (non)integrability of Hamil-
tonian systems on topologically nontrivial phase spaces, (4) universality in linear quantum
optics, (5) geometric measures of entanglement. In the following I briefly describe this sub-
jects.

Scattering from isospectral graphs

In 1966 Mark Kac asked his famous question 'Can one hear the shape of a drum?’ [35]. This
question can be reformulated as: Does the Laplacian defined on a planar region in R? with
Dirichlet boundary conditions have a unique spectrum?. The answer to this question was
found only in 1992, when authors of [22] constructed a pair of isospectral domains in R?. A
quantum graph consist of egdes called bonds and vertices in which bonds connect. By fixing
boundary conditions at the vertices we obtain a selfadjoint Laplace operator on a graph, and
therefore we can ask the Kac’s question. The authors of [26] proved that one can hear the
shape of a quantum graph provided the bonds lengths are incommensurate. Next in 2008 the
method to construct isospectral graphs, based on the representation theory of finite groups
was given [9]. In 2009 during my intership at the Weizmann Institute in Israel I showed that
scattering matrices of isospectral graphs have identical spectra and distributions of poles.
These kind of graphs are called isoscattering. I also gave the first and only known up to now
method for construction of isoscattering graphs. The results were published together with
my collaborators [10]. Experimental verification of this theoretic results was carried in the
group of Prof. L. Sirko with whom I closely collaborated in this respect [47, 48].
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Classification of abelian quantum statistics on quantum graphs

In 1977 Leinaas and Myrheim showed that Abelian representations of the fundamental group
of the classical configuration space determine the possible realisations of quantum statistics.
If the fundamental group is the group of permutations then the topological approach to
quantum statistics coincides with the standard one, namely we have two exchange statistics:
Bose and Fermi, respectively. When the space dimension is equal to two (for the particles
on R?), the fundamental group is not the permutation group but a braid group which has
infinitely many elements. The abelian version of the braid group is isomorphic with the group
of integers 7, which means that exchanging particles can lead to any phase. For quantum
graphs that are locally one-dimensional the problem of quantum statistics turns out to be
very interesting and also far more difficult. During my stay at the University of Bristol in
the period 10/2010-10/2013 1 managed to (1) provide the full classification of all possible
Abelian quantum statistics on any connected simple graph (publication [28]), (2) to propose
a construction method of discrete Morse functions for two particle configuration spaces [62].

As I showed, the number of anyon phases is determined by the connectivity of the con-
sidered graph. For 3-connected nonplanar graphs only possible statistics are bosons and
fermions. For 3-connected planar graphs there is exactly one anyone phase. Thus, we can
say that from the point of view of topology, up to the first homology group, 3-connected
graphs behave like R? when planar and R? otherwise. Moreover, the number of anyon phases
does not depend on the number of particles for graphs that are at least 2-connected. Inter-
estingly, these graphs may have more than one anyon phase, and their number is determined
by the number of 3-connected components in a decomposition of the 2-connected graph. Al-
though this decomposition is not unique, the number of components obtained is always the
same. For l-connected graphs quantum statistics depends on the number of particles in the
system. All of these results were obtained by developing a new set of methods for calculating
the homology groups, which bring together some known facts from graph theory, discrete
Morse theory and simple calculations for certain small graphs. The results of [28] and [62],
published in Communications in Mathematical Physics and Journal of Physics A, were the
basis of my doctoral dissertation in mathematics defended at the University of Bristol in
2014.

(Non)integrability of Hamiltonian systems on topologically nontrivial phase spaces

One of the problems in quantum chaos theory is showing that the classical limit of quantum
chaotic system is classically chaotic as well. The more modest goal would be to prove that
the limit is not integrable. In publication [60], which was the basis of my master thesis de-
fended in February 2010 at the University of Warsaw, I presented the first analytical proof of
nonitegrability of a Hamiltonian system with a symmetry group SU(3), which is a classical
limit of quantum chaotic system. The considered system was defined on the dual space to
the Lie algebra su(3), which is naturally a Poisson manifold. To prove nonintegrability I used
a recently developed theory of Morales and Ramis [51] that is based on differential Galois
theory. The Hamilton equations are partial differential equations. Therefore to apply differ-
ential Galois theory one has to find some ordinary differential equation related to Hamilton
equations. Tn short words, the problem boils down to finding a special solution of Hamilton
equations and then linearising them around this solution. Morales-Ramis theory ensures that
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if the linearised system of ordinary differential equations has non-abelian differential Galois
group the corresponding Hamiltonian system is not integrable. In paper [60] I showed that
for the considered linearization the differential Galois group is not solvable and hence it is
not abelian.

Universality in linear quantum optics

One of the fundamental problems in quantum linear optics is construction of n-mode gates.
About 20 vears ago the authors of [59] showed that having at the disposal all possible 2-
mode gates and phase shifters, one can construct any n-mode gate. This result, however, is
of limited practical significance because typically we have only access to a few types of optical
gates and from them we want to build another ones. Mathematically, the considered problem
reduces to determination of the set generated by some elements of a Lie group. If this set is
a dense subset of the group we call it universal. The universal set of gate types is a set that
allows the construction of any optical gate with an arbitrary precision. In publication [65] 1
am dealing with the problem of generating SO(V) groups having at disposal only one optical
gate that operates on two or three modes, thus belonging to the group .5 0(2) or SO(3). Using
tools of control theory I show that a nontrivial 2-mode gate is always universal. The same is
true for almost all 3-mode gates.

Geometric measures of entanglement

Separability of a multipartite quantum state is invariant under the action of the certain
transformations allowed by quantum mechanics. From a mathematical point of view, this
situation can be described by the action of a compact Lie group K on a manifold M. The
considered manifold of course depends on the particular physical situation. For example, for
pure states it is a complex projective space M = P(H). Interestingly, M is equipped with a
symplectic structure induced by the natural symplectic structure existing on each complex
Hilbert space. Orbits of K-action on M being submanifolds of M may also, under certain
conditions, inherit symplectic structure, and even the complex structure of the Hilbert space
#. In the paper published in Communications in Mathematical Physis [63], which was the
basis of my doctoral dissertation defended in 2011 at the University of Warsaw, 1 showed
that entanglement between various subsystems can be quantitatively characterised by the
dimension of the degeneration of the canonical symplectic form restricted to K orbits. The
paper [61] is a continuation of [63] and gives a geometric characterization of low-dimensional
local unitary orbits by showing that for the system of two identical but distinguishable
particles the generic K-orbit is coisotropic.
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