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My scientific research and interest after obtaining a PhD focused on three topics:

(1) quantum correlations, in particular, the role of quantum entanglement and discord in
their quantifying,

(2) using Lie-algebraic methods in solving ordinary differential equations,

(3) quantisation of dissipative systems.

As a summary of my scientific activity in the subject of quantum correlations, I presented
the monograph Nonclassical correlations. Quantum entanglement and discord [?]. The mo-
nograph consists of four chapters, which include the most important results of my research
presented in the wider context of contemporary problems of classification, qualitative and
quantitative evaluation of the classical and quantum correlations and their role in quantum
computing.
The well-known manifestation of quantum correlations in composite systems is entangle-

ment [1]. For a pure state of two parties |Ψ⟩ entanglement means the lack of factorization of
|Ψ⟩ into a product of vectors of subsystems. Hence, such a state is characterised by a linear
combination of product states, i.e.,

|Ψ⟩ =
∑
jk

cjk|ϕj ⟩ ⊗ |ψk ⟩

where the coefficients cjk do not factorize. For a mixed state ρAB the situation becomes more
subtle and whether it is entangled or not (no entanglement = separability) is determined
to a large extent by the way it is produced. To be precise, ρAB is separable if there exist
in distant laboratories A and B two families of states {ρAk }, {ρBk }, respectively, prepared by
local operations and classical communication (e.g., transmission of probability distribution
{pk}) between A and B only and such that

ρAB =
∑
k

pkρ
A
k ⊗ ρBk (1)

remains untouched by the interaction with environment.
In [2, Sect. 3] I formulated the following crucial problems of entanglement analysis:
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(1) How to detect entanglement, i.e., how to distinguish the entangled states of a composite
system from separable ones? The answer to this question is known for pure states
but for mixed states the simple solution is possible only for low-dimensional systems
described in Hilbert spaces HAB = C2 ⊗ C2 (for example, two spin-1/2 particles) or
HAB = C2 ⊗ C3. For particles with spins higher than 1/2, we must rely on numerical
algorithms. From the other hand, it should be developed methods that can detect
entangled states experimentally using available measurement techniques.

(2) How to measure entanglement? Again, methods using entropy-like quantities characte-
rising a given state provide simple answer only for pure states. Generalizations of such
entanglement measures for mixed states are in practice difficult to handle. Therefore,
some methods for estimating the entanglement measures should be developed.

(3) How to protect entanglement? It turned out that quantum correlations are very gentle,
when the state undergoes even a weak interaction with environment. While coherences
usually delay exponentially in time, entanglement can completely disappear in finite
time. Hence, it is important to work out some methods of entanglement activation and
distillation.

Note however, that entanglement is just one of many possible manifestations of non-classical
correlations between states or, more generally, systems. These non-classical correlations can
account for unique and special resource which can be used in a number of information-
theoretic applications (such as the kinetic energy of the system can be used to perform useful
work) such as teleportation, encoding, cryptography, and other quantum protocols.
The variety of situations in which correlations in mixed quantum states are revealed, is

not surprising, but until recently it was thought that separable states (1) do not contain any
useful quantum correlations. But the states {ρAk } and/or {ρBk } do not have to commute and,
therefore, they can contribute correlations into ρAB arising from their noncommutativity. In
this context, only the states

ρcc =
∑
i,k

pik|ei⟩⟨ei| ⊗ |fk⟩⟨fk| , (2)

where {|ei ⟩} and |fk ⟩ are orthonormal bases in subsystems A and B, respectively, actually do
not contain non-classical correlations. Such states are called classical and they are completely
characterized by the joint probability distribution {pik}. In opposition to classical states,
quantum-classical and classical-quantum states of the form

ρqc =
∑
k

pkρ
A
k ⊗ |fk⟩⟨fk| , ρcq =

∑
i

qi|ei⟩⟨ei| ⊗ ρBi . (3)

can be non-classically correlated if the families of matrices {ρAk } or {ρBk } do not commute.
All the above mentioned families of states are separable, hence no entanglement measure

can classify their quantum correlations. This confirms the previous observation that entan-
glement reflects only some features of non-classical correlations of quantum states and to
distinguish between them one considers various sorts of correlation measures, in particular
various kinds of quantum discord and its geometric counterpart. More comprehensive discus-
sion of these quantities can be found in [3] and [2, Sect. 2.5 and Sect. 4]. Apart from the
classifying role they have also physical meaning in terms of thermodynamics of microscopic
systems, quantum information deficit, irreversibility of entanglement, quantum protocols and
of completely positive dynamics of open systems (see review article [4] for details).
The information-theoretic point of view resulted in two independent definitions of quan-

tum discord raising from the following observations:
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(1) two classical entropic quantities defined as

IAB = S(A) + S(B)− S(A,B) , JAB = S(A)− S(A|B) , (4)

where S(X) is the Shannon entropy of the subsystem X and S(A|B) is the conditional
entropy, are equal. But they are not when considering quantum theory with the Shannon
entropy S replaced by von Neumann ones H and interpreting the conditional entropy
S(A|B) as the Holevo quantity corresponding to the optimal quantum measurement1

JAB −→ CAB = sup
ΠB

(
H(A)−H(A|{ΠB})

)
.

Taking into account that IAB is interpreted as a measure of total correlations in the
state (classical and quantum), non-zero difference IAB −CAB indicates the presence of
quantum correlations.

(2) it will be of great importance to have a unique method of distinguishing between clas-
sical and quantum correlations. In this context, the quantity

DAB := IAB − CAB , (5)

called a quantum discord, is a good candidate for a measure of quantum correlations.

Entanglement, quantum discord and other quantities related to non-classical correlations
are intensively studied theoretically as well as experimentally. My studies in this subject
correspond to the following problems:

(1) Detecting entanglement in a family of circulant states: [2, Sect. 3.3.4], as well as [7].

(2) Determining local numerical ranges for circulant operators: [2, Sect. 1.6] and [8, 9].

(3) Analysis of SPPT states: [2, Sect. 3.3.3], as well as [5, 6].

(4) Estimating concurrence using entanglement witnesses: [2, Sect. 3.5] and [11, 12].

(5) Study of quantum q-discord based on Tsallis entropy function: [2, Sect. 4.4] and [13,
14, 15].

1Suppose that correlations between subsystems A and B are determined by a measurement process on the
subsystem B described by a one-parameter family of orthonormal projectors {ΠBk }. As a result one obtains
an ensemble {pk, ρAk }, where

ρAk =
1
pk
trB [(1l⊗ΠBk )ρAB(1l⊗ΠBk )†] ,

and pk = tr[(1l⊗ΠBk )ρAB ] is a probability of states ρAk to be measured. One can use the Holevo quantity

χ({pk, ρAk }) :=
∑
k

pkH(ρ
A
k )

corresponding to the ensemble {pk, ρAk } to provide the quantum counterpart of conditional entropyH(A|{ΠB}),
this time conditioned by the measurement. After optimisation over measurement techniques classical correla-
tions obtained this way read

CAB = sup
ΠB
CΠ

B

AB = sup
ΠB

(
H(A)−H(A|{ΠB})

)
= H(A)− sup

ΠB

∑
k

pkH(ρ
A
k ) .

The quantity CAB should replace JAB in (4).
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These issues will be discussed in more details in what follows. In addition to the subjects
indicated above my monograph provides an overview of

— in Chapter 1 — some ingredients of a mathematical formalism used in the monograph
with particular emphasis on the role of entropy and positive mappings,

— in Chapter 2 — classification of non-classical correlations and their measurement,

— in Chapter 3 — quantum entanglement of states, methods of its detection and quanti-
tative evaluation, with particular emphasis on measures and their estimates,

— in Chapter 4 — quantum discord and methods of its measurement.

To my best knowledge there is no similar study in polish literature that would combine
different aspects of non-classical correlations and characterize them in a uniform framework.

5.1 Detecting entanglement in a family of circulant states

Circulant states correspond to the following representation of a Hilbert space of a composite
system

Cd ⊗ Cd =
d⊕

k=1

Σk (6)

in terms of a direct sum of subspaces Σk, where Σk = (1l ⊗ Sk)Σ1, S|ei ⟩ = |ei+1 ⟩ mod d,
{|e1 ⟩, . . . , |ed ⟩} is a given basis in Cd and Σ1 = span{|e1 ⟩ ⊗ |e1 ⟩, |e2 ⟩ ⊗ |e2 ⟩, |e3 ⟩ ⊗ |e3 ⟩}
(cf. [2, p. 118]).
In my investigations I considered the 3 ⊗ 3-circulant states corresponding to a Hilbert

space decomposition (6) given by

C3 ⊗ C3 = Σ1 ⊕ Σ2 ⊕ Σ3 ,

where

Σ1 = span{|e1 ⟩ ⊗ |e1 ⟩, |e2 ⟩ ⊗ |e2 ⟩, |e3 ⟩ ⊗ |e3 ⟩} ,
Σ2 = span{|e1 ⟩ ⊗ |e2 ⟩, |e2 ⟩ ⊗ |e3 ⟩, |e3 ⟩ ⊗ |e1 ⟩} = (1l⊗ S)Σ1 ,
Σ3 = span{|e1 ⟩ ⊗ |e3 ⟩, |e2 ⟩ ⊗ |e1 ⟩, |e3 ⟩ ⊗ |e2 ⟩} = (1l⊗ S2)Σ1

are three orthogonal subspaces of C3 ⊗ C3. 3 ⊗ 3-circulant state is a sum of three positive
semidefinite operators

ϱk =
3∑

i,j=1

a
(k)
ij |i⟩⟨k | ⊗ |i+ k ⟩⟨j + k | , k = 1, 2, 3 ,

defined on subspaces Σ1, Σ2, Σ3, respectively, with positive semidefinite matrices A(k) = [a
(k)
ij ],

k = 1, 2, 3. Hence the circulant state

ϱ =
1
N
(ϱ1 + ϱ2 + ϱ3) ,

where N = tr(A(1) + A(2) + A(3)) is the normalisation constant, is completely characterised
by matrices A(1), A(2), A(3).
The problem of characterisation of the separability conditions for circulant states is, in

general, not solved yet, but some of their ingredients are discussed in [7], as well as in [2,
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Sect. 3.3.4]. In these articles I investigated a subfamily of 3 ⊗ 3-circulant corresponding to
the following choice of A(k):

A(1) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , A(2) =

d12 · ·
· d23 ·
· · d31

 , A(3) =

d13 · ·
· d21 ·
· · d32

 .
Consider the family of states ϱ(A, ε), with A ≡ A(1) ­ 0, 0 < ε ̸= 1 and

di,i+1 = ε|ai,i+2| , di,i+2 =
1
ε
|ai,i+2| , i = 1, 2, 3 .

My numerical studies based on generalised realignment criterion CCNR (cf. [2, p. 82])2,
indicate some connection between the notion of a diagonal domination of a matrix A and its
separability.3 Unfortunately, there is no proof (but also no counterexample) of the hypothesis:

HYPOTHESIS 1:

(1) If the matrix A has a strictly dominant diagonal and 0 < ε ̸= 1, then the states ϱ(A, ε)
are separable.

(2) If a positive semidefinite matrix A has a dominant diagonal maximally broken and
0 < ε ̸= 1, then the states ϱ(A, ε) are entangled.

An interesting class of ϱ(A, ε) is given by A = 1, where

1 =

 1 1 11 1 1
1 1 1

 .
It is characterised by a circulant structure of the principal diagonal with entries

{(1, ε, ε−1), (ε−1, 1, ε), (ε, ε−1, 1)} . (7)

It was shown in [7] and in [2, p. 120] that the states ϱ(1, ε) are entangled if 0 < ε ̸= 1, which
remains in the perfect agreement with Hypothesis 1. Note that 1 has a dominant diagonal
maximally broken!

2Generalised realignment criterion CCNR can be formulated as follows: If the state of a composite system
ρAB is separable, then for each u ∈ [−1, 1] the quantity

zu[ρAB ] := |R(ρAB + uρA ⊗ ρB)|1 −
√
(1 + u tr ρ2A)(1 + u tr ρ

2
B) ¬ 0 ,

where R is a realignment map and | · |1 is the trace norm. As a consequence, if the above condition is broken,
then the state ρAB is entangled.
3A d× d matrix X = [xij ] is called

— a dominant diagonal matrix, if ∀ i = 1, . . . , d aii ­
∑
j,j ̸=i

|aij |,

— a stricly dominant diagonal matrix, if ∀ i = 1, . . . , d aii >
∑
j,j ̸=i

|aij |,

— the matrix with maximally broken dominant diagonal, if ∀ i = 1, . . . , d aii <
∑
j,j ̸=i

|aij |.

6



5.2 Local numerical range analysis

An elegant method of detection of entanglement in some bipartite state ρ in a Hilbert space
H = HA⊗HB is to find an appropriate entanglement witness, i.e., a self-adjoint operator W ,
which being non-negative on product states,

⟨ψ | ⊗ ⟨ϕ |W |ϕ⟩ ⊗ |ψ ⟩ ­ 0 , |ϕ⟩ ∈ HA, |ψ ⟩ ∈ HB , (8)

detects ρ, i.e., tr(ρW ) < 0. There are various methods of construction of witnesses (cf. [2,
Sect. 3.2.8]). One of them uses a simple observation that for each entanglement witness W
there exist λ > 0 and a positive definite operator P , such that

W = λ1l− P .

The values of λ correspond to the so-called local numerical range of P (LNR(P )). By this
notion we mean (cf. [2, Sect. 1.6]) an interval LNR(P ) = [amin, amax] (contained in spectrum
of P ), which covers the values of P on the product states, i.e.,

LNR(P ) = {⟨y | ⊗ ⟨x |P |x⟩ ⊗ |y ⟩ : |x| = |y| = 1, |x⟩ ∈ HA, |y ⟩ ∈ HB} . (9)

The condition (8)

0 ¬ ⟨ψ | ⊗ ⟨ϕ |W |ϕ⟩ ⊗ |ψ ⟩ = λ− ⟨ψ | ⊗ ⟨ϕ |P |ϕ⟩ ⊗ |ψ ⟩

implies then
λ ­ sup

|ψ|=1
|ϕ|=1

{⟨ψ | ⊗ ⟨ϕ |P |ϕ⟩ ⊗ |ψ ⟩} = amax .

Hence, the knowledge of LNR(P ) for some positive operator P enables one to construct a
family of entanglement witnesses. The choice of P should reflect the state to be detected by
the witness. In general, local numerical ranges of operators can be determined numerically
using for example self-convergence (see [2, Sect. 1.6.1]).
However, it will be convenient to have an analytical solution to this problem, at least for

a certain class of operators. Motivated by this I studied LNR for circulant operators acting
on C2⊗Cd [2, Sect. 1.6.2]. Just like in the case of circular states already discussed, circulant
operators correspond to a circular decomposition of the Hilbert space

C2 ⊗ Cd =
d⊕

k=1

Σk (10)

into orthogonal two-dimensional subspaces

Σ1 = span
{
|e1 ⟩ ⊗ |f1 ⟩, |e2 ⟩ ⊗ |f2 ⟩

}
,

Σ2 = span
{
|e1 ⟩ ⊗ |f2 ⟩, |e2 ⟩ ⊗ |f3 ⟩

}
...

Σd = span
{
|e1 ⟩ ⊗ |fd ⟩, |e2 ⟩ ⊗ |f1 ⟩

}
,

where {|ei ⟩ ⊗ |fk ⟩}, i = 1, 2, k = 1, . . . , d is a basis in H = C2 ⊗ Cd. A self-adjoint operator
O is called circulant with respect to a decomposition (10), if

O = O1 ⊕ . . .⊕Od , (11)
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where each operator Ok acts on the subspace Σk and it can be represented in the basis
{|ei ⟩ ⊗ |fk ⟩} by a complex-entries matrix [a

(k)
ij ] of dimension 2× 2 as

Ok =
2∑

i,j=1

a
(k)
ij |ei ⟩⟨ej | ⊗ |fi+k ⟩⟨fj+k | , (12)

where addition in subscripts is assumed to be modulo d.
The crucial results of that study are the following:

(1) in the case of the circulant operator acting on C2 ⊗ Cd it is always possible to choose
such an orthonormal product basis that the entries of the matrix representation of this
operator are real. In addition, maximal and minimal values of the function

fO(|x⟩, |y ⟩) = ⟨x | ⊗ ⟨y |O|x⟩ ⊗ |y ⟩

which determine LNR(O), are attained in points with real coordinates [2, Th. 1.2]. This
allows one to reduce effectively the optimization problem from C2 ⊗ Cd to R2 ⊗ Rd.
However, because of a polynomial character of a set of d + 2 equations, it is rather
hopeless to expect analytical solutions for d > 2,

(2) for d = 2, analytical solutions leading to LNR(O) are presented in [2, Sect. 1.6.3] and
[8].

5.3 Analysis of SPPT states

An interesting and very important class of states is distinguished by the condition that the
partial transposition acting on their matrix representations, i.e. the transposition only in
one of the subsystems, does not destroy the semi-positivity of their spectrum. Such states
are called PPT (positive partial transposed states). In dA ⊗ dB systems, for dAdB ¬ 6, all
PPT states are separable. In higher dimensions among PPT states there are also entangled
states, but they are very weakly entangled, and detecting (and measuring) entanglement in
that case is particularly difficult. It is due to the fact that the most efficient entanglement
criterion based on partial transposition is invalid in this case (see [2, Sect. 3.1.4] as well as [2,
Sect. 3.3.2]). Therefore, from a theoretical point of view, it is vital to provide a simple method
of generation of such PPT states, in order to study their entanglement, and to distinguish
some families of PPT states, which remain separable for any dimension of the Hilbert space.
Such studies were presented in [5, 6], where the following method of construction of new

families of dA⊗dB-PPT states, called SPPT (Strong PPT) and SSPPT (Super Strong PPT),
was proposed:

(1) Let {|e1 ⟩, . . . , |edA ⟩} be a basis in C
dA .

(2) Given matrices Xi and Sij , i < j, i, j = 1, . . . , dA of dimension dB×dB consider a block
matrix

X =


X1 S12X1 S13X1 · · · S1dAX1
0 X2 S23X2 · · · S2dAX2
...

...
. . .

...
...

0 0 0 XdA−1 SdA−1,dAXdA−1
0 0 0 0 XdA

 .
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(3) A normalised matrix 1NX
†X =: ρAB, where N = tr(X1) + . . . + tr(XdA), is called a

SPPT state, if there exists another block matrix

Y =



X1 S†12X1 S†13X1 · · · S†1dAX1

0 X2 S†23X2 · · · S†2dAX2
...

...
. . .

...
...

0 0 0 XdA−1 S†dA−1,dAXdA−1
0 0 0 0 XdA

 ,

such that ρTAAB =
1
NY

†Y .

(4) In that case we declare that a dA⊗ dB-state ρAB has a SPPT representation (from the
side B) corresponding to Xi and Sij .

In the analogue way one can define the SPPT representation from the side A. Certainly, the
method of construction guarantees that the states are PPT.
From the condition ρTAAB =

1
NY

†Y it results the following compatibility conditions betwe-
en Xi and Sij :

j−1∑
k=1

X†kS
†
kjSkjXk =

j−1∑
k=1

X†kSkjS
†
kjXk dla j = 2, . . . , dA , (13)

i−1∑
k=1

X†kS
†
kjSkiXk =

i−1∑
k=1

X†kSkiS
†
kjXk dla 2 ¬ i < j = 3, . . . , dA , (14)

In particular, (13) and (14) are fulfilled, if for all k < i ¬ j

SkiS
†
kj = S

†
kjSki . (15)

States which have the SPPT representation corresponding to the family of matrices {Sik}
fulfilling (15) are called SSPPT (Super Strong PPT).
Several properties of these states, in particular, their entanglement/separability property,

representability of a given state in a SPPT (SSPPT) form, some connections of the SSPPT
states with the zero-discord states have been studied in [5, 6] as well as in [2, Sect. 3.3.3].
The separability problem of SPPT states can be summarized as follows:

(1) SSPPT states in dA⊗dB systems are separable [2, Thm. 3.22]. Hence, to represent SPPT
state using the family of normal matrices {Sik} satisfying conditions (15) is enough to
decompose it as a convex combination of product states of subsystems. Moreover, this
decomposition is in some situations unique [2, Thm. 3.23].

(2) If d ¬ 4, then the SPPT states in 2⊗ d systems are separable [2, Thm. 3.24]. For d ­ 5
there are entangled SPPT states!

Another problem is raising: can a given dA⊗dB-state ρAB be represented as SPPT state?
In the case of 2⊗d-states, analysed in [2, Ch. 3.3.3], it is equivalent to the problem of existing
X1, X2 and S fulfilling the condition

X†1S
†SX1 = X

†
1SS

†X1 . (16)

The following two simple cases do satisfy this condition:
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(1) If S is self-adjoint, then the condition (16) is fulfilled, moreover, such a state is PPT-
invariant, i.e. X = Y , as a consequence, ρAB = ρ

TA
AB.

(2) If X1 has a maximal rank (equal to d), then the condition (16) is fulfilled if and only if
the matrix S is normal, i.e. [S, S†] = 0. Note that for 2⊗ d systems every state of rank
at least d can be described in a canonical form

ρAB =

[
1l S

S† S†S

]
. (17)

It is obvious that the above states are SPPT, for which X1 = 1l and X2 = 0.

In both cases, the resulting SPPT states are separable, as states of the 2⊗ d system of rank
at least d.
More general situation occurs when in the given basis the matrix representation of the

state does not display its canonical form (17) but

ρAB =

[
ρ11 ρ12
ρ21 ρ22

]
, (18)

where the block ρ11 has maximal rank. Then the SPPT representation exists if and only if
[2, Thm. 3.19]

ρ†12ρ
−1
11 ρ12 = ρ12ρ

−1
11 ρ
†
12 . (19)

When rank(ρ11) = r < d the situation is more complicated, but it is still possible to represent
the state in the SPPT form, if the following condition is fulfilled [2, Thm. 3.20]

s†11s11 + s
†
21s21 = s11s

†
11 + s12s

†
12 , (20)

where sik are such blocks of S, that the dimension of s11 is r × r,

S =

[
s11 s12
s21 s22

]
.

Interestingly, it turned out that the classical-quantum and quantum-classical states (3)
in 2⊗d systems (but not in 3⊗d) may be represented as SSPPT states. It was first observed
in [10], and later discussed, in a slightly different context, in [2, Thm. 3.21].

5.4 Estimations of concurrence using entanglement witnesses

It is a serious disadvantage of many entanglement measures that they can be easily calculated
only for pure states and for a few families of states with high symmetry (Werner, isotropic,
orthogonally invariant states). Therefore, it is crucial to look for computable estimates for
various entanglement measures and for their relationships among them.
The most fundamental meaning as a measure of correlations is a information-theoretic

quantity called entanglement entropy. In the case of 2⊗ 2 systems it is a function of concur-
rence, which is another quantity used to evaluate the degree of entanglement, however, is not
strictly an entanglement measure (it does not reduce to the entanglement entropy for pure
states). Note that various measures and quantities related to them enable often a quantitative
evaluation of other aspects of entanglement corresponding to various strategies of its use.
Let |ψAB ⟩ be a pure state in d⊗ d system. Concurrence of the pure state is defined by

C(|ψAB ⟩) =
√
2(1− tr ρ2A) .
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Simple calculation shows that concurrence is a function of Schmidt coefficients {√µk} of
|ψAB ⟩:

C(|ψAB ⟩) = 2
√∑
i<j

µiµj . (21)

Its generalisation to mixed states is obtained via the convex roof construction (see [2, Def. 3.15]):

C(ρ) = co C(ρ) = inf
{pk,|ψk ⟩}

{∑
k

pkC(|ψk ⟩) : ρ =
∑
k

pk|ψk⟩⟨ψk|
}
. (22)

Concurrence for two-qubit mixed states was first derived by Wooters as

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} , (23)

where λk are singular values of non-hermitian matrix ρρ̃ in non-increasing order, ρ̃ = (σy ⊗
σy)ρ∗(σy⊗σy) is a matrix corresponding to spin flip. The relation (23) does not generalise to
higher dimensions d > 2, but some similar relations can be obtained as lower estimations. In
[2, Ch. 3.5.1] I called this type of estimation an algebraic one but there are also other methods
of estimation using various norms (trace-norm, cross-norm, and others) (see [2, Sect. 3.5.2]),
entanglement witnesses or positive maps. In particular, the last two methods were analysed
in [11, 12] and in [2, Ch. 3.5.3,Ch. 3.5.4].
A possibility of concurrence estimation using entanglement witnesses results from the

following observation [2, Thm. 3.29]: let f [ρ] be a convex functional on the space of a d × d
composite system fulfilling the condition

f [|ψ⟩⟨ψ|] ¬ 2
∑
k<l

√
µkµl (24)

for every pure state with Schmidt coefficients {√µk}, then

C(ρ) ­
√

2
d(d− 1)

max{0, f [ρ]} .

Note, that the functional f can be chosen as

f [ρ] = − tr(ρW ) ,

where W denotes an entanglement witness of ρ. Note that providing the condition (24) is
valid, i.e.

−⟨ψ |W |ψ ⟩ ¬ 2
∑
k<l

√
µkµl , (25)

the witness W of ρ gives the following estimation of concurrence:

C(ρ) ­
√

2
d(d− 1)

| tr(ρW )| . (26)

It seems that the condition (25) distinguishes a class of witnesses obeying it, but in fact, every
witness detecting ρ after an appropriate scaling does fulfil it. Indeed, a witness multiplied by
a positive factor is still a witness and, as a consequence, can be used to estimate concurrence
[11, 12]. Note also that for the pure state with the Schmidt decomposition

|ψ ⟩ =
d∑

k=1

√
µk|ak ⟩ ⊗ |bk ⟩ (27)
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the expectation value of W in the state ρ reads

⟨ψ |W |ψ ⟩ =
∑
k,l

√
µkµlA

(W )
kl (ψ) ,

where the matrix elements of A(W )(ψ) are the following:

A
(W )
kl (ψ) = Re ⟨ak | ⊗ ⟨bk |W |al ⟩ ⊗ |bl ⟩ . (28)

In particular, diagonal entries A(W )kk = ⟨ak | ⊗ ⟨bk |W |ak ⟩ ⊗ |bk ⟩ are expectation values of W
on separable states, therefore,

A
(W )
kk (ψ) ­ 0 . (29)

In this new notation the condition (25) is equivalent to∑
k,l

√
µkµl(A

(W )
kl (ψ) + 1) ­ 1 . (30)

Now, define a quantity
λ(W ) := −min

ψ
min
k ̸=l

A
(W )
kl (ψ) , (31)

which gives a new characterisation of an entanglement witness in terms of matrix elements
of A(W )(ψ). In fact, the quantities defined in (28) are, for a given witness W , polyno-
mials in (x,y) = (x(k)j , y

(l)
s ): coordinates of Schmidt vectors |ak ⟩ = [x

(k)
1 , . . . , x

(k)
d ], |bl ⟩ =

[y(l)1 , . . . , y
(l)
d ]. In that picture, −λ(W ) is an absolute minimum of the whole family of poly-

nomials corresponding to off-diagonal entries of (28). If

min
ψ
min
k ̸=l

A
(W )
kl (ψ) ­ 0 ,

thenW could not detect any entangled state, hence the absolute minimum should be negative
and hence λ(W ) > 0. Now, for every witness W detecting ρ, a rescaled witness Wα =
α−1W fulfils (30), providing that α ­ λ(W ). As a consequence Wα can be used to estimate
concurrence via

C(ρ) ­
√

2
d(d− 1)

| tr(ρWα)| . (32)

To summarize, I proposed the following procedure which can be applied to estimate
concurrence of ρ using its entanglement witness W :

W
(1)−→ W ′

(2)−→ A
(W ′)
kl

(3)−→ λ(W ′)
(4)−→ Wλ

(5)−→ tr(Wλρ) .

The subsequent steps have the following meaning:

(1) determining κ = mink A
(W )
kk . If κ > 0, then one can construct the better (tangent)

witness, i.e., W ′ =W − κ1l,

(2) determining the family of polynomials {Wij(x,y)} corresponding to off-diagonal entries
of A(W

′)(ψ),

(3) calculating an absolute minimum λ(W ′) of a set of polynomials {Wij(x,y)},

(4) determining the rescaled witness Wλ = λ−1W ′,

(5) estimating concurrence.

12



The estimation using entanglement witnesses has two advantages compared to those ob-
tained by other methods,

(1) if we know an entanglement witness of some state, it is much simpler than in other me-
thods raising from optimisation procedures to determine the estimation of concurrence.
Unfortunately, the value of λ(W ) must be often determined numerically,

(2) in principle, the estimation using witnesses is directly measurable in experiment, as an
average value of the self-adjoint operator in a quantum state.

Going further, the concurrence estimation provided by entanglement witnesses can be
pulled forward to an estimation introduced directly by positive maps (see [2, Ch. 3.5.4]).4 Po-
sitive but not completely positive maps (n-CP) play the crucial role in entanglement detection
(see [2, Ch. 3.2.7]) and in constructions of entanglement witnesses using Choi-Jamiołkowski
isomorphism J : Φ 7→WΦ defined as

WΦ = J (Φ) :=
d∑

i,j=1

|i⟩⟨j | ⊗ Φ(|i⟩⟨j |) ,

where {|i⟩} is a computational basis in Cd.5 Suppose that Schmidt bases (27) {|ak ⟩}, {|bk ⟩}
corresponding to the pure state |ψ ⟩ have entries

|ak ⟩ = [a
(k)
1 , . . . , a

(k)
d ] , |bk ⟩ = [b

(k)
1 , . . . , b

(k)
d ] .

Then, for k ̸= l the quantities A(Φ)kl (ψ), which are analogues of (28), but corresponding to Φ,
read

A
(Φ)
kl (|ak ⟩, |bl ⟩) =

∑
i,j

Re
[
⟨ak |i⟩⟨j |al ⟩⟨bk |Φ(|i⟩⟨j |)|bl ⟩

]
=

∑
i,j

∑
p,q

Re
[
Φijpqa

(k)
i a
(l)∗
j b(k)p b(l)∗q

]
,

where
Φijpq = ⟨p |Φ(|i⟩⟨j |)|q ⟩ . (33)

The concurrence estimation resulting directly from (32), takes the form

C(ρ) ­
√

2
d(d− 1)

(λ(Φ))−1| tr(ρ(1l⊗ Φ)(Π+d ))| , (34)

4Let us recall that a map Φ :Md →Md, where Md denotes the set of d× d matrices is called
— positive, if it preserves hermicity and positivity semidefinitness of matrices,

— k-positive, if the mapping 1lk ⊗ Φ :Mk ⊗Md →Mk ⊗Md is positive,

— completely positive (CP), if the mapping 1lk ⊗ Φ :Mk ⊗Md →Mk ⊗Md is positive for k ¬ d,
— decomposable, if there exist completely positive maps Φ1 and Φ2, such that Φ = Φ1 +Φ2 ◦ T .

5Isomorphism J gives a one-to-one correspondence between the set of linear maps {Φ : Md → Md} and
the set of entanglement witnesses {WΦ} displaying the following properties [2, Ch. 1.5.2]:
(1) Φ is a CP map iff WΦ is positive semi-definite.

(2) Φ is a n-CP map iff WΦ is a block-positive matrix, which is not positive, i.e.,

⟨x | ⊗ ⟨y |WΦ|x⟩ ⊗ |y ⟩ ­ 0 , ∀ |x⟩, |y ⟩ .

(3) Φ is decomposable iff WΦ is decomposable, i.e., WΦ = W1 + W
TB
2 for some positive semi-definite

operators W1, W2.
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where
−λ(Φ) = min

|ak ⟩,|bl ⟩
min
k ̸=l

A
(Φ)
kl (|ak ⟩, |bl ⟩)

Unfortunately in most known examples, the quantity λ(Φ) must be determined numerically
due to a large number of variables to be optimised upon.

5.5 Analysis of quantum discord related to the Tsallis entropy function

The definition of quantum discord (5) can be generalised using information-theoretic func-
tions other than von Neumann entropy. They can be used to determine classical and total
correlations in the system (see for example a discussion in [2, Ch. 1.4]). In particular, Tsallis
entropy function

Tq(X) =
1− tr ρqX
q − 1

, q > 0 , q ̸= 1 , X = A,B,AB (35)

or Renyi entropy

Rq(X) =
ln(tr ρqX)
q − 1

, q > 0 , q ̸= 1 , X = A,B,AB ,

where ρAB, ρA, ρB denote the state of the composite system AB, and its reductions to
subsystems A and B, respectively, seem to be good candidates.6 Both functions generalising
von Neumann entropy have been successfully used in entanglement detection procedures
(extensive discussion and summary of this topic can be found in [2, Sect. 3.2.3]) giving
some new insight into of quantitative description of correlations different than von Neumann
entropy.
Hopefully, a similar situation can also be true when examining quantum discord. There-

fore, I introduced a notion of a quantum q-discord based on Tsallis entropy in [13, 14, 15]
and in [2, Rozdz. 4.4].
Quantum q-discord (from a side A) is defined as (see (5))

DqAB := IqAB − CqAB , (36)

where

IqAB = Tq(A)−
Tq(B)− Tq(AB)
1 + (1− q)Tq(B)

= Tq(A)− Tq(A|B)

is a mutual Tsallis entropy (a counterpart of mutual von Neumann entropy interpreted as a
measure of total correlations in ρAB), and

CqAB = Tq(A)− inf
{ΠB}

Tq(A|{ΠB})

is a mutual Tsallis entropy conditioned by a measurement ΠB (a counterpart of von Neumann
entropy conditioned by a measurement interpreted as a measure of classical correlations in
ρAB). The quantity

Tq(A|{ΠB}) =
∑
k p

q
kTq(ρ

A
k )∑

k p
q
k

(37)

is a Tsallis entropy of subsystem A conditioned by a measurement on subsystem B represented
by an ensemble of post-measurement states {pk, ρAk }. It is relatively easy to check that the
relation

DqAB = inf
{ΠB}

Tq(A|{ΠB})− Tq(A|B) , (38)

6Both functions Tq and Rq give the von Neumann entropy H in the limit q → 1.
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describes the q-discord as well. The first term in (38) needs optimisation over measurements on
subsystem B, but the second being a conditional Tsallis entropy is measurement-independent.
Note two fundamental differences of new-defined quantities with respect to ordinary discord:

(1) in the definition of q-discord a one-parameter family of Tsallis entropy (35) indexed by
q > 0 is used. This allows to observe various types of behaviour of quantum correlations
with respect to q,

(2) the relation (37) uses a modified procedure of averaging over the ensemble (generalised
Holevo quantity) (detailed discussion can be found in [2, Ch. 1.4]).

In [2, Sect. 4.4] I derived q-discord for two-qubits Werner and isotropic states showing
analytically that for these highly symmetric states it is non-negative and it takes zero only
for a maximally mixed state, as opposed to other measures based on Tsallis entropy. It
should be emphasized that q-discord allows a selection of some correlation features depending
on the value of a continuous parameter q. Unfortunately, the values of q-discord are not
monotonic with respect to q even for symmetric states. Moreover, analysis of a q-discord for
some particular family of circulant states shows that it can take negative values for some
q ­ 2, which significantly limits its use as a quantum correlation measure, however, it does
not exclude it completely. Numerical analysis shows that q-discord is still non-negative for a
wide class of states when 0 < q ¬ 1.

To summarize the results of my research in the field of quantum correlations, their detection
and characterization let me emphasise the following:

(1) we have examined a subclass of 3 ⊗ 3 circulant states. We have shown that some of
them are entangled (states ϱ(1, ϵ)) and as to the others we have postulated a hypothesis
about the relationship between separability/entanglement and the notion of a dominant
diagonal of the matrix,

(2) we have shown that every circulant operator acting on C2⊗Cd can be represented (in a
suitable basis) by a real-entries matrix, moreover, in this basis, supremum and infimum
of a local numerical range (LNR) are attained on vectors with real components. For
d = 2, we provided their analytical forms, hence giving the LNR,

(3) we defined and analysed new families of PPT states called SPPT and SSPPT, which
obey a chain of incusions

SSPPT ⊂ SPPT ⊂ PPT .

We have shown that SSPPT ⊂ SEP and SPPT(d ¬ 4) ⊂ SEP,7

(4) we have derived conditions under which any state of a composite 2 ⊗ d system has a
SPPT representation (from the point of view of one of the subsystems). In particular,
we have shown that all classical-quantum and quantum-classical states of 2⊗ d system
(but not 3⊗ d) can be represented in the SSPPT form,

(5) we have discussed a method of estimating concurrence based on entanglement witnesses.
We have shown that each witness detecting entanglement of the given state can be

7SEP denotes here the set of separable states whereas by SPPT(d ¬ 4) we mean the set of 2 ⊗ d SPPT
states with d ¬ 4.
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appropriately rescaled and used to estimate concurrence. The optimal value of this
rescaling λ(W ) is a new parameter characterizing the witness. A similar notion can be
defined for n-CP mappings (positive but not completely positive),

(6) we have introduced a new measure of quantum correlations — quantum discord based
on Tsallis entropy (q-discord). We have shown that it is well-defined (non-negative)
for highly symmetric two-qubit states (Werner and isotropic). We have determined its
value for a class of circulant states. We discussed and compared the q-discord with other
similar measures of correlations,

(7) in my monograph [2] one finds many analyses of quantities describing correlations for
symmetric (Werner, isotropic, orthogonal) and circulant states as well as discussions
of entropic quantities used to characterise correlations, including quantum discord and
q-discord.

6 Other scientific achievements

6.1 Applications of Lie-algebraic methods for solving partial differential
equations

My earlier (pre-doctoral) interest was also related to the subject of spectral line shapes, in
particular, to the influence of the measuring apparatus on the line shape [16, 17]. It turned
out that the line profile I(ω) can be determined from solutions of some partial differential
equations. Providing some additional assumptions these solutions can be obtained analytically
[18] using the Lie-algebraic methods in application to the set of differential operators (see for
instance [19]).
Width, shift with respect to the unperturbed frequency and possible asymmetry of the line

are closely related to the conditions under which a line arises: they depend on temperature
and pressure of radiating gas, as well as on the presence of other gases, which can collide
with emitters and change their movement.
In the simplest approximation, if one neglects any influence of collisions on emitting

atoms, the line profile (the so-called Voigt profile) is symmetric and takes into account the
Doppler width and shift (corresponding to the movement of emitters) and pressure width
and shift (corresponding to pressure of radiating gas). Experimental line profile is typically
a convolution of a Voigt profile with an instrument function that characterises influence of
the measuring apparatus (for instance, of interferrometer used in the experiment) on line
parameters.
In more advanced models one should take into account the impact of collisions on the line

shape, in particular, the influence of speed changing collisions with perturbing atoms on the
shift and width of the line. The line profile can be determined from a distribution function
F (t, v⃗), depending on time and a velocity vector v⃗, which satisfies the following Boltzmann
kinetic equation:

∂

∂t
F (t, v⃗) = −i(ω0 + k⃗ · v⃗)F (t, v⃗) + ŜF (t, v⃗) ,

where ω0 is the rest transition frequency and k⃗ is the wave vector of emitting light. The
collision term ŜF (t, v⃗) includes all collisional corrections. In the soft collision model and
assuming the quadratic dependence of collisional width and shift on the emitter speed, the
line shape can be finally determined by solving the differential equation

∂

∂t
G(t, x) = ÂG(t, x) , G(0, x) = e−x

2
, (39)
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with the differential operator

Â = c1 + c2x+ c3x2 + c4x
∂

∂x
+ c5

∂2

∂x2
, (40)

where ck are some complex constants.
From the Lie-algebraic point of view the differential operator (40) belongs to the algebra

spanned by [21]

{
ê1 = 1, ê2 = x, ê3 = x2, ê4 = x

∂

∂x
, ê5 =

∂2

∂x2
, ê6 =

∂

∂x

}
,

hence, the solution to (39) belongs to the orbit of an appropriate Lie group passing through
an initial point G(0, x), i.e.,

G(t, x) = etÂG(0, x) . (41)

Methods of describing the orbits of Lie groups are well-known (see for instance, [19, 21]).
What significantly reduces (or even enables) analytical results is the initial condition G(0, x)
in the form of a Gauss function, i.e., a function belonging to a family

{e−(x−µ)2/σ2 : σ2 > 0, µ ∈ R} .

It is obvious due to the Baker-Hausdorff formula that there exist functions gk(t), k = 1, . . . , 6,
which allow to display the orbit of the group (41) as a composition

G(t, x) = exp[g1(t) + g2(t)x+ g3(t)x2] exp
[
g4(t)x

∂

∂x

]
× exp

[
g5(t)x

∂2

∂x2

]
exp

[
g6(t)

∂

∂x

]
e−x

2
, (42)

where each operator exp[gk(t)êk] transforms a Gauss function into another (for details see
[18]). Hence the solution can be written as

G(t, x) = exp[h1(t) + h2(t)x+ h3(t)x2] ,

where the functions hk(t) obey the set of ordinary differential equations which can be solved
analytically [18]! Now, in soft collision approximation and assuming the quadratic dependence
of collisional width and shift on velocity, F (t, v⃗) can be determined from G(t, x), and finally
I(ω) can be obtained via

I(ω) =
1
π
Re
∞∫
0

eiωtΦ(t)dt , Φ(t) =
∫
R3
F (t, v⃗)dv⃗ .

To summarize my achievements:

(1) using Lie-algebraic methods in application to a particular set of differential operators
we have solved a class of Boltzmann kinetic equations with collisional operator of the
Fokker-Planck-type taking into account the velocity-changing collisions and the parti-
cular quadratic dependence of the collisional line width and shift on velocity,

(2) we have discussed the impact of such effects on the line-shape profile and we have
compared them with known results.
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6.2 Quantisation of dissipative systems

The quantum description of physical system which dissipate energy during evolution (eg., as a
result of various types of damping forces) is still far away from full understanding. Such non-
Hamiltonian systems cannot be, in general, quantise using canonical methods. In principle,
there is no room for their description in the standard formulation of quantum mechanics based
on a Hilbert space formalism and the Schrödinger equation which provides a one-parameter
family of unitary operators defining reversible evolution. Beyond this formalism is a quantum
theory of open systems permitting non-unitary evolution (based on semigroups formalism)
with dissipation [20].
There are, however, other methods involving no such a general theory. There are defor-

mation quantisation raised from the classical phase space with noncommutative composition
(convolution) of functions or the methods based on direct quantisation of classical equation
of motion, just to recall a few. Unfortunately, apart from some simplest cases, these methods
are difficult to generalize and to apply.
In what follows I would like to focus on discussing different methods of canonical quanti-

sation of the damped harmonic oscillator (DHO) model described by a classical differential
equation

ẍ+ 2γẋ+ ω20x = 0 , (43)

where γ is the damping constant, ω0 is the eigen-frequency. It is one of the simplest, yet
most important models, which has been extensively studied and can serve as a toy model
for testing various methods (a short discussion and the subject and further references can be
found in [22]). The questions which arise are related to the following problems:

— how to represent this equation in order to derive its quantum counterpart,

— how to solve the quantum equation,

— and finally, how to interpret the results, in particular, what is and how can we recognise
dissipation at the quantum level?

All above questions seem to be non-trivial!
In 1931 Bateman [23] tried to represent DHO as a Hamiltonian system with an additio-

nal degree of freedom y, which would obey a “dual” equation with an opposite sign of the
dissipative term:

ÿ − 2γẏ + ω20y = 0 . (44)

The parameter y plays the role of a variable corresponding to a reservoir degree of freedom and
it is responsible for receiving dissipated energy, so that the whole system (DHO + reservoir)
is isolated. Constant of motion (the so-called Bateman Hamiltonian) of the dynamical system
(43) + (44) takes the form

H(x, y, px, py) = pxpy + ω2xy − γ(xpx − ypy) , ω =
√
ω20 − γ2 , (45)

where canonical momenta are px = ẏ − γy, py = ẋ + γx. Unfortunately, this Hamiltonian
does not reproduce the energy of the system even in the limit γ → 0! Meanwhile using (45)
Feshbach and Tichochinsky [24] have carried out the canonical quantisation procedure using
a group SU(1,1) and its generators providing energies and energy eigenstates. The eigenvalues
of the quantum counterpart of (45) indexed by two numbers

j = 0,±1
2
,±1,±3

2
, . . . , m = |j|, |j|+ 1, |j|+ 2, . . . ,
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turn out to be complex
E±jm = 2~ωj ± i~γ(2m+ 1) , (46)

and the corresponding eigenstates — unnormalisable in a Hilbert space. Let us emphasize,
however, that the Hamilton operator considered by Feshbach and Tichochinsky is self-adjoint.
Numerous interpretations and generalizations of the results were reported by many authors
(extensive discussion of these issues can be found in [25]).
In paper [26] we discussed a different method of quantisation of DHO system showing,

among others, that complex energy values (46) of a self-adjoint Hamiltonian correspond to
the so-called resonant states, well-known from the theory of scattering. Our approach used a
different extension (providing additional degrees of freedom) of the classical phase space to
obtain a Hamiltonian system. Note that due to Pontryagin [27] any dynamical system

ẋ =X(x) , x = (x1, . . . , xN ) ∈ RN (47)

where X is a vector field on a configuration space RN can be generalised to a Hamiltonian
system on RN × RN with

H(x,p) = p ·X(x) :=
N∑
ℓ=1

pℓXℓ(x) . (48)

Note that a half of Hamilton equations, i.e.,

ẋ =
∂H

∂p
=X(x)

reproduces the dynamical system under consideration (47), while the rest describes the evo-
lution of additional degrees of freedom

ṗ = −∂H
∂x

.

Quantisation of such system relies on a Wigner-Weyl (WW) transform of a classical Hamilton
function (48), i.e., Ĥquant = WW(H) (see [26] for details). Note that Ĥquant is a self-adjoint
operator on L2(RN , dx).
There is one more ambiguity in an application of this method to DHO system: the choice

how to represent a second-order differential equation as a set of first order equations. We
assumed the set of equations on R2 in the following form:{

ẋ1 = −γx1 + ωx2
ẋ2 = −γx2 − ωx1 .

The above set is non-Hamiltonian, but using Pontriagin method can be extend to a Hamil-
tonian one on R2 × R2 with the following Hamiltonian function

H(x,p) = ω(p1x2 − p2x1)− γ(p1x1 + p2x2) . (49)

Now the variables (x1, x2, p1, p2) are in a very simple manner connected with the variables of
a Bateman approach (45)

x1 =
py√
ω
, p1 = −

√
ω y

x2 = −
√
ω x , p2 = −

px√
ω
.
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It is convenient to carry out quantisation procedure in polar coordinates

x1 + ix2 = reiφ

representing quantum Hamiltonian as

Ĥquant = iω~
∂

∂φ
+ iγ~

(
r
∂

∂r
+ 1

)
on the Hilbert space L2(R2, dx1dx2) = L2([0, 2π), dφ)⊗L2(R+, rdr). Solving the eigenproblem
ĤquantΨlλ = ElλΨlλ, we obtained the energy eigenvalues [26, §4.2]

Elλ = ~(lω + λγ) (50)

and eigenstates:

Ψlλ(r, φ) = Φl(φ) ·Rλ(r) =
1
2π
r−(iλ+1)e−ilφ,

where l = 0,±1,±2, . . . and λ ∈ R. Note that Hamiltonian is unbounded and its spectrum
Sp(Ĥquant) = R. Moreover, the radial part

Rλ(r) =
1√
2π
r−(iλ+1) ,

does not belong to L2(R+, rdr) and should be treated as a distribution.8
As it was shown in [26, §5], distributions Ψlλ provide spectral decomposition of the Ba-

teman Hamiltonian (generalized to the space of distributions). Due to the invariance of the
Hamiltonian with respect to the time reversal operation, the time-reversed distributions lead
to another spectral decomposition. It is necessary to introduce two classes of test functions
S± ⊂ L2(R), which naturally lead to two types of evolution: ‘forward in time’ and ‘backward
in time’, thus leading to irreversibility.9

In addition, the poles of a resolvent operator

R̂(Ĥquant, z) = (Ĥquant − z)−1

8Obviously the eigenfunction Ψlλ(r, φ) are distributions as well and their action on a test function ϕ(r, φ) ∈
S is the following:

Ψlλ(ϕ) = ⟨ϕ|Ψlλ⟩ =
1
2π

∫
R2
e−ilφr−iλ−1ϕ(r, φ)dS =

∞∫
0

r−iλϕl(r)dr ,

where dS = rdrdφ and

ϕl(r) =
1
2π

2π∫
0

eilφϕ(r, φ) dφ .

9The sets S± are defined as follows: a function f± : R→ C is in an upper (+) (lower (-)) Hardy class H2±,
if f± can be analytically continued to F± defined on the upper (lower) complex half-plane C±, such that for
K > 0 [28]

sup
y

∫
R

|F±(x± iy)|2dx < K

is valid. Then S± is such a subset of test functions S that

S± = {ϕ ∈ S : ⟨ϕ|Ψlλ⟩ ∈ H2±} ,

in other words ϕ ∈ S±, if the function C ∋ λ 7→ ⟨ϕ|Ψlλ⟩ ∈ C belongs to the Hardy class H2±.
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defined on S± read
E±nl = ~lω ± i~γ(|l|+ 2n+ 1)

and coincide after a suitable identification with the discrete family of complex energy eige-
nvalues E±jm given by (46),

j =
l

2
, m =

1
2
(|l|+ 2n) = |j|+ n .

Since the eigenstates corresponding to the poles of a resolvent are known in a scattering
theory as resonant states, our considerations lead to the conclusion that all the phenomena:
resonances, dissipation and irreversibility of evolution are connected with each other. More-
over, our results indicate that the natural formalism for the mathematical description of this
system is that of two Gelfand triples provided by S± and their dual counterpart S ′± [29]:

S± ⊂ L2(R2) ⊂ S ′± .

For further discussion of this subject, in particular, for the relationship of the DHO system
with two-dimensional parabolic potential barrier see [30].
The DHO equation may also be represented by a time-dependent Hamiltonian system.

Indeed, Hamilton equations for the Caldirola-Kanai Hamiltonian

HCK(x, p, t) =
1
2
m0ω

2x2 e2γt +
1
2m0

p2 e−2γt . (51)

reproduce the DHO equation as well. Note that the function (51) is a potential energy of an
harmonic oscillator with a mas term depending on time, i.e.m(t) = m0e2γt, wherem0 = m(0).
This suggests to consider a general time-dependent Hamilton function with a mass depending
on time, i.e.

H(x, p, t) =
p2

2m(t)
+
1
2
m(t)ω2x2 .

Then the appropriate Newton equation reads

ẍ+
ṁ(t)
m(t)

ẋ+ ω2x = 0 , (52)

and we call it a generalized damped harmonic oscillator equation (GDHO) [31]. The problem
we considered in [31] was the following: determine the mass term m(t) which meets the
following conditions:

(1) for large t the equation (52) transforms to DHO equation, i.e.,

κ(t) :=
1
2
ṁ(t)
m(t)

−→ γ ,

(2) solutions to (52) describe the oscillations with a constant ω and its value is the same
as the frequency of damped harmonic oscillations

ω =
√
ω20 − γ2 .

We analysed also a possible quantisation of such systems.
It turns out that the conditions (1)–(2) are fulfilled in two cases only :

κ(t) = γ tgh(γ(t− t0)) or κ(t) = γ ,
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where t0 is an integration constant. These leads to

m(t) = m0 cosh2(γ(t− t0)) or m(t) = m0 e2γ(t−t0)

where in both models m(t0) = m0 is assumed. It is obvious that m(t) = m0e
2γ(t−t0) leads

to the Caldirola-Kanai (CK) model. Its quantum version was extensively studied (see for
instance [25]). But already at the classical level there is a significant difference in dynamical
features of both models: the matrix ΛCK(t, t0) describing the dynamics in CK model(

x(t)
p(t)

)
= ΛCK(t; t0)

(
x0
p0

)

fulfils the composition law

ΛCK(t2; t0) = ΛCK(t2; t1) ◦ ΛCK(t1; t0)

whereas an analogue matrix ΛGDHO(t; t0) describing the dynamics of the second model with
m(t) = m0 cosh2(γ(t−t0)), does not obey the law! As a consequence, the parameter t0 arising
in m(t) = m0 cosh2(γ(t − t0)) is considered as responsible for memory effects (in a sense of
non-Markovian dynamics). These results (discussed in more details in [31]) can be generalised
to the quantum counterparts of systems under discussion. The memory effects arise then as
a result of a violation of the composition law for quantum propagators

K(x, t;x0, t0) = ⟨x|Texp
(
− i

~

t∫
t0

H(t′)dt′
)
|x0⟩ ,

provided by a choice of Hamiltonian H(t). A further generalisation of these observations in
[32] enables to show that an (integral) evolution equation with memory

d

dt
Λ(t, t0) =

t∫
t0

K(t− τ)Λ(τ, t0)dτ

can be alternatively represented by a local-in-time differential equation

d

dt
Λ(t, t0) = L(t− t0)Λ(t, t0) ,

where, however, the information about the initial moment t0 of evolution is built up in a
generator L. This property distinguishes the local-in-time equations with memory from those
without memory.

Summing up the results of my research:

(1) using the method of Pontryagin and introducing some additional degrees of freedom we
have defined a Hamiltonian for the damped harmonic oscillator model, which generates
the correct equation of motion. We have shown that this Hamiltonian is equivalent to
Bateman Hamiltonian,

(2) we have proposed a method of canonical quantisation of the resulting Hamiltonian
system in polar variables, determining its eigenvalues and eigenvectors as well as the
Feynman propagator. We have discussed the properties of its spectral decomposition
resolvent,
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(3) we have shown that the discrete eigenvalues of the Bateman Hamiltonian correspond
to the poles of two resolvent operators defined on the spaces of test functions S±, and
the eigenfunctions corresponding to these values are responsible for resonant states in
the system. The spaces S± and their duals S ′± are elements of two Gelfand triples that
provide a natural environment for mathematical description of the DHO,

(4) we have observed that the appearance of resonant states leads to dissipative phenomena
and irreversible dynamics,

(5) we have discussed more general equation with dissipation (52) containing the initial time
t0 and we have interpreted it as leading to memory effects in a local-in-time manner.
We have shown that these observations are still correct at the quantum level and lead
to loss of a composition law for quantum propagators.
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