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(c¢) Discussion of scientific goals, obtained results, and their
significance

c.l1 Introduction and motivation

Over the last decades, theoretical approaches have been successfully used to determine
molecular properties and to provide a fundamental understanding of chemical reac-
tivity and reaction mechanisms. Specifically, theoretical methods are particularly
instructive when experimental studies of thermodynamics, kinetics, complexation,
and reaction mechanisms are complicated due to, for instance, toxicity, radioactiv-
ity. and instability of chemical compounds.!? Most importantly, a reliable quantum-
mechanical treatment must address the fact that electrons do not move independently,
but in a correlated fashion.

However, the accurate modeling of the correlated motion of electrons remains an open
problem in theoretical chemistry. This difficulty originates from the different contri-
butions that govern the correlated motion of electrons,® commonly referred to as
strong and weak correlation. An exact determination of these effects can be obtained
from the Full-Configuration-Interaction (FCI) method. Unfortunately, FCI is only
computationally feasible for small systems* with up to approximately 20 electrons.
Its computational limitations led to the development of various approximate methods,
which form hierarchies of approximations to FCI. In quantum chemistry, two main an-
siitze can be distinguished: density functional theory (DFT) and wave function-based
methods. Although DFT is superior to wave function methods in terms of efficiency
and cost, it is unreliable for systems with strong electron correlations like transition
metal and actinide compounds®® or bond-breaking processes. To treat strong elec-
tron correlation, multiconfigurational wave function-based methods can be applied.
The most popular and well-established approaches are the Complete-Active-Space
Self-Consistent-Field (CASSCF) ansatz” and its extensions,®? the Multi-Reference
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Configuration-Interaction Singles and Doubles (MR-CISD) approach,'® and Multi-
Reference Coupled Cluster methods.!! The former methods are usually employed
in combination with a subsequent perturbative treatment of weak correlation. 2%
However, standard multi-reference methods are computationally very expensive and
their computational cost scales exponentially with the size of the system, an effect
known as the curse of dimension. This resource bottleneck limits their application
to small molecular system. typically small molecular building blocks of realistic ma-
terials. 1+10,16-21,21-32

To overcome the exponential-scaling wall of standard ab initio methods, unconven-
tional electron correlation approaches have been introduced into quantum chemistry;
most of these approaches are based on compact parameterizations of the many-
electron wave function. One example is the Density-Matrix Renormalization-Group
(DMRG)?3 38 algorithm, which is a cheaper alternative to CASSCF methods. DMRG
has been already successfully applied in transition metal chemistry, 346 where it van-
quished notorious failures of conventional approaches. Recent research suggests that
DMRG represents a promising alternative to study actinide chemistry. 47 Although
DMRG is much less computationally demanding than standard quantum mechanical
models for strong correlation, it is still very expensive, so only small building blocks
of large actinide compounds can be investigated using the DMRG algorithm.

c.2 Electronic wave functions based on electron pairs

Alternatively, strongly correlated materials can be efficiently modeled using ap-
proaches based on non-interacting electron pairs. The electronic wave function is
then constructed from electron-pair states,*® called geminals. An advantage of this
approach is that intra-pair electron correlations are taken into account from the be-
ginning, and in many cases this captures the dominant fraction of strong—and to a
smaller extent, weak—correlation. %2 Examples for geminal-based approaches are
the Antisymmetric Product of Strongly orthogonal Geminals (APSG).%¥*® the An-
tisymmetrized Geminal Power®® 6! (which is a special case of projected Hartree-
Fock-Bogoliubov®?), the Antisymmetric Product of Interacting Geminals %:54.63-73
(APIG), Generalized Valence Bond ™™ (GVB), and the Antisymmetric Product of
1 reference orbital Geminals (AP1roG).%? These new geminal-based methods are
distinguished from other multi-reference methods by their comparatively negligible
resource requirements, which are comparable to DFT methods. This makes geminal-
based approaches ideal candidates for modeling strongly-correlated materials.

A promising family of geminal-based wave function ansitze allows us to approxi-
mate the APIG wave function efficiently, resulting in a computationally tractable
model. One example is AP1roG that represents an efficient parameterization of the
Doubly-Occupied (DO) CI wave function, requiring only mean-field computational
cost. In contrast, traditional DOCI implementations suffer from factorial scaling.
The AP1roG wave function ansatz can be written in terms of one-particle functions

as a fully general pair-coupled-cluster-doubles (pCCD) wave function, ™ i.e.,
P K
[AP1roG) = exp (Z Z c?aiaéa;ag) [Pg), (1)
i=1l a=P+1
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where al, a} and a,, ap are the electron creation and annihilation operators for o-
(p) and j3-electrons (), and |®g) is some independent-particle wave function (usually,
but not restricted to the Hartree-Fock (HF) determinant). In the above equation, we
used the standard notation where indices i and a correspond to occupied and virtual
orbitals with respect to |$g). P denotes the number of electron pairs (P = N/2 with
N being the total number of electrons) and K is the number of one-particle functions.
{c2} are the geminal coefficients and link the geminal wave function with the underly-
ing one-particle basis functions.®® Especially, the geminal coefficient matrix encodes
the orbital-pairing scheme in the geminal wave function. We should emphasize that,
in the AP1roG ansatz, all virtual orbitals are allowed to contribute to each geminal.
Thus, unlike APSG and GVB-PP, this approach does not require the orbital-pairing
scheme to be optimized. ®!

c.3 Ensuring size-consistency

Unfortunately, the AP1roG wave function ansatz in eq. (1) is not size-consistent 82 and

hence does not provide reliable potential energy surfaces. To ensure size-consistency,
we have to optimize the one-particle basis functions. This can be done in a fully
variational manner [H8], analogous to orbital-optimized coupled cluster® (OCC),
or using approximate seniority-based projection schemes [H6,H7]. In the following,
we will briefly summarize the main steps and ideas of our optimization procedures
introduced in [H6-HS8|.

¢.3.1 Variational orbital optimization

In [H8], we presented the first variational orbital optimization of the AP1lroG wave
function using a Lagrange formulation. The orbitals are then chosen to minimize the
AP1roG energy expression subject to the constraint that the wave function amplitude
(or geminal coefficient) equations are satisfied. The energy Lagrangian takes thus the
form

£ =(@ole " He"|AP1roG) + Y A} (@4 e~ He®|AP1roG) — Ecf),  (2)

ia
with {\¢} being the Lagrange multipliers. In the above equation, & is the generator

of orbital rotations

®= Z Rm(a;aq - a:;ap), (3)

p>q

where (#pq) is a skew-symmetric matrix and transforms into a new orthogonal basis
with a transformation U = ¢* and e == He* is the Hamiltonian in the rotated basis.**
|®%7) denotes a single-pair-excited determinant with respect to the reference determi-
nant |®). The variational orbital gradient g is obtained as the partial derivative of
the Lagrange energy functional with respect to the orbital rotation coefficients {rq}
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evaluated at x = 0 [H6,HT],
ac

dﬁipq K=

: =(Py + Z AP [(a;‘,aq - azap).fz’] |AP1roG)

— (@] [(a;r,a,_, — a}ap), H} |AP1roG) S Adct. (4)

i

In contrast to conventional OCC theory, occupied-occupied and virtual-virtual or-
bital rotations are non-redundant and have to be considered in the orbital gradient
equations. Thus, the indices p and ¢ run over all occupied and virtual orbitals. The
Lagrange multipliers {\?} require the solution of an additional set of equations de-
fined by AL/dc?, again evaluated at k = 0, which leads to a set of equations for the
Lagrange multipliers, analogous to the A-equations in CC theory,

e —(®o|Halalaza;|AP1roG) + ¥ A (®%2| Hal afaza;| AP1roG)
e k=0 “ AT
T jb
— EX — (iiaa) Y _ Nje} = 0. (5)
b

The requirement that the derivative of £ with respect to the Lagrange multipliers
{A2} is stationary results in the standard set of equations for the geminal coefficients

oL

v =(®%|H|AP1roG) — Ec{ = 0. (6)

k=0

To obtain the unitary transformation matrix U, we first expand the energy Lagrangian
as a function of kK up to second order

1
LK) =L +klg+ ERTAE. (7)

where A is the molecular orbital Hessian and g is the orbital gradient whose elements
are defined in eq. (4). Thus, minimizing the Lagrangian with respect to {rp,} leads
to the well-known equation for the orbital rotation coefficients

k= —Ag. (8)

After the orbital gradient and Hessian are determined, the matrix representation of
x can be evaluated from the above equation. The transformation matrix is then
approximated as U = 1 + k + %,r:.*n and orthogonalized.

¢.3.2 Non-variational orbital optimization schemes

We also developed different (approximate) orbital optimization techniques that ex-
ploit the generalized Brillouin theorem 8 of a seniority-zero wave function for the
orbital parameters.3»%¢ The corresponding algorithms are discussed in [H6,H7|. In
contrast to the variational orbital optimization, the non-variational orbital optimiza-
tion schemes do not require the solution of the A-equations of AP1roG. Instead, our
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methods are based on the assumption that the seniority-zero-plus-two (2 = 0,2) sec-
tors and the seniority-zero (€ = 0) sector can be decoupled (the seniority number is
defined as the number of unpaired electrons in a Slater determinant). The optimal
set of orbitals is chosen such that the decoupling condition is satisfied. To understand
the relation between orbital optimization and decoupling of the = 0,2 and © =0
sectors, we assume that ¥'% is a CI expansion comprising only closed-shell configura-
tions, i.e., a seuimity z.e:o wave function, constructed from a set of optimized orbitals.
Further, consider 'Ilm, to be CI expansion containing both closed-shell Slater de-
terminants and Slater determinants with exactly two unpaired electrons, i.e., a CI
expansion restricted to the seniority-zero-plus-two sectors, again with optimized or-
bitals. Assuming that the optimal seniority-zero-plus-two solution is very close to the
optimal seniority-zero solution, we can write

VO =00 + 0@ = (1+ ) tyeahag) ¥, (9)
P#q

where {t,} are some expansion coefficients. The seniority-zero-plus-two sectors and
the seniority-zero sector can be decoupled if CI expansions restricted to the € = 0,2
and © = 0 sector have the same energy expectation value. Thus, the following
equation must hold

(02 A0y — (v |H|TD)) =o0. (10)

The above condition is satisfied to first order in {t,q} if (f4) is a skew-symmetric
matrix. In this case, the seniority-two contribution of %2 (the second term on the
right hand side of eq. (9)) can be written as

v = Z tog(alag — aha,) WL (11)
pP>q

Using the above equation, the decoupling condition eq. (10) can be straightforwardly
simplified. Keeping only terms up to first order in {¢,,}, we obtain the approximate
decoupling condition

(DA |1TQ) + (T HITR) + Ot?) =0

Substituting eq. (11) in the above equation, the approximate decoupling condition
can be reformulated as

lI'(m|[aTap—apaq H]|'I’{D y=0 Yp>gq, (12)

84 of a seniority-zero wave

which is equivalent to the generalized Brillouin theorem
function for the orbital parameters, %556

Therefore, the decoupling of the seniority-zero-plus-two sectors and the seniority-
zero sector is equivalent to satisfying the orbital-dependent part of the generalized
Brillouin theorem of an © = 0 wave function to first order. In cases where higher

order terms in {t,,} become important, the simplification of eq. (10) to satisfy eq. (12)

oy
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is not valid and a seniority-zero-plus-two wave function will result in a lower energy
expectation value than a CI expansion constrained to the seniority-zero sector.®7 In
the following, eq (12) will be used as a starting point to derive different approximate
orbital-optimization schemes.

Choosing the optimal set of orbitals such that eq. (12) is satisfied scales factorially
with system size. We can reduce the computational cost by making two assump-
tions as outlined in Ref. 52. First, we assume that the AP1roG model is a decent
approximation to a seniority-zero wave function, i.e., |AP1roG) ~ [w(©)), The good
performance of AP1roG in approximating the doubly occupied CI (DOCI) wave func-
tion (a wave function restricted to the seniority-zero sector) has been shown in many
numerical examples. 52528839 Then, the rotated set of orbitals can be obtained by

solving
(AP1roG]| [(af?ap - a;r,a.q),fﬂ |AP1roG) =0 Vp>gq. (13)

Yet, the cost of solving the above equation still grows factorially with system size
and we are compelled to make further simplifications for the sake of computational
tractability. Our second, more pragmatic assumption is, therefore, to restrict the
excitation manifold to all singly-pair excited determinants with respect to the refer-
ence determinant |®q). Thereby, the optimal set of orbitals can be determined in a
computationally efficient way. In doing so, eq. (13) reduces to

(D + Z(rf@‘fﬂ [(a;ap - a;aq), (e‘”}fle")] |[AP1roG) =0 Vp>gq, (14)

where we have written the Hamiltonian explicitly in the rotated basis. Eq. (14)
represents our starting point for different orbital-optimization procedures that aim
at decoupling the seniority-zero and seniority-zero-plus-two sectors.

In our first approach, no further approximations are made and the {#p,} are optimized
such that eq. (14) is fulfilled. Since the action of a.;f,aq on the bra-state (or equivalently
on the ket-state) of eq. (14) generates a seniority-two wave function, the optimized
set of orbitals is obtained by requiring that the projection of the seniority-two sector
on the AP1roG wave function vanishes, i.e., the Hamiltonian does not connect the
seniority-two and seniority-zero sectors in the case of an optimal basis. Thus, we
will call eq. (14) the projected-seniority-two condition using the commutator formu-
lation (PS2c) and the left hand side of eq. (14) the PS2c¢ orbital gradient g(P52¢) (k).
Note that the PS2c method bears similarity to the variational orbital optimization
scheme. While in the variational orbital optimization procedure we need to solve for
{A\¢} to construct all important intermediates (one- and two-particle response density
matrices), only the geminal coefficients are required in the PS2c approach.

In our second (non-variational) orbital-optimization procedure, we impose the
stronger condition that each term of the commutator vanishes separately,

(Po + Zc?‘l’ffii(az% - aI,aq)(e_“ﬁe‘)lAPlroG) =0 Vp>aq. (15)
ia

Note that the above equation is still antisymmetric in its indices p, g. We will refer to
eq. (15) as the antisymmetric PS2 condition (PS2a) and the left hand side of eq. (15)

VAT EWMJ
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as the PS2a orbital gradient g(¥5%) (k).
In our most stringent approximation, we require that the first term of eq. (15) equals
zero individually and the projected-seniority-two condition simplifies to

T

(@0 + Y i@ |afa, (e He®)|APLroG) =0 ¥p>q. (16)

This choice was motivated by the analogy to the Brillouin theorem of HF theory.
Note that in the case of HF theory, the above relation is known as the Brillouin
theorem for a closed-shell Slater determinant. The above equation corresponds to
the PS2 condition and its left hand side is the PS2 orbital gradient g¥5? (k). For
all non-variational orbital optimization techniques, the matrix representation of s,
and thus the unitary transformation matrix, is determined from eq. (8) using the
corresponding orbital gradient g(¥5%9) (k = 0) evaluated for the current set of orbitals
and the (diagonal approximation of the) orbital Hessian Apg pq = %55:

rk=0"

c.3.3 Assessing the performance of orbital-optimized AP1roG

The accuracy of the variational and non-variational orbital optimization methods has
been benchmarked against a set of challenging multi-reference systems. Specifically,
we have investigated the dissociation process of hydrogen chains containing up to
50 hydrogen atoms [H7,H8] and second-row diatomics (LiF, C;) [H7], the Be-H;
insertion reaction, the automerization process of cyclobutadiene, and the energetic
stability of the monocyclic and bicyclic forms of the pyridyne molecule [H6]. As an

%_o'
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Figure 1: Fitted total energy per hydrogen atom curves for hydrogen chains of dif-
ferent lengths using the PS2 and variational orbital optimization procedures. The
DMRG reference data has been taken from ref. 90.
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example, we present the dissociation process of linear hydrogen chains (see Figure 1),
the barrier heights of the automerization process of cyclobutadiene (see Table 1), and
the energetic stability of the monocyclic and bicyclic forms of pyridyne (summarized
in Table 2).

The symmetric dissociation of linear hydrogen chains up to 50 hydrogen atoms is
a commonly-used molecular model for strongly-correlated systems and remains a re-
markably difficult task for conventional quantum-chemistry approaches. %0793 Further-
more, studying the (symmetric) dissociation of hydrogen chains allows us to numeri-
cally assess to what extent the PS2 optimization procedure recovers size-consistency.
Figure 1 shows the fitted DMRG reference energy-per-atom curve for the symmetric
stretching problem of Hso. The overall agreement of PS2-/voo(variational orbital
optimization)-AP1roG with DMRG is good. Larger deviations from the DMRG ref-
erence are found around the equilibrium distance and originate from dynamic corre-
lation effects that cannot be captured by AP1roG, but can be included a posteriori
(vide infra). For stretched internuclear distances, the PS2- /voo-AP1roG energy-per-
atom curves are closely parallel to the DMRG reference.

Furthermore, our numerical studies on cyclobutadiene and pyridyne reveal that the
accuracy of PS2a- and PS2¢c-AP1roG is similar to voo-AP1roG in most cases. In par-
ticular, the PS2c orbital optimization scheme yields total electronic energies and en-
ergy splittings that are similar to the variational orbital optimization counterpart. As
expected, the PS2a-AP1roG approach gives total electronic energies that are higher
than PS2c-AP1roG and voo-AP1roG, because of additional constraints in the orbital
gradient that are not present in PS2c-AP1roG and voo-AP1roG. For all investigated
(multi-reference) molecules, both PS2a- and PS2c-optimized molecular orbitals are
essentially indistinguishable from voo-AP1roG molecular orbitals. Furthermore, all
three orbital optimization methods produce symmetry-broken solutions (localized,
hybrid molecular orbitals). As an example, the optimized valence molecular orbitals

Table 1: Barrier heights of the automerization process of cyclobutadiene. Differences
with respect to the multi-reference Mk-MRCCSD(T) results are given in parentheses.
GS: ground state; TS: transition state.

Method Total energy |Hartree| Barrier height
GS TS [Hartree| [keal /mol]

PS2-AP1roG —153.719 321 —153.690 619 | 0.028 702 18.0 (+10.2)
PS2a-AP1roG —153.884 005 —153.850 491 | 0.033 514 21.0 (+13.2)
PS2c-AP1roG —153.886 993 —153.854 496 | 0.032 497 20.4 (+12.6)
voo-AP1roG —153.887 097 —153.854 631 | 0.032 466 20.4 (+12.6)
MP2 —153.643 539 —153.592 092 | 0.051 447 32.3 (+24.5)
CAS(4,4)SCF —153.713 999 —153.630 231 | 0.083 768 52.6 (+44.8)
NEVPT2/CAS(4,4) —154.190 998 —154.125 766 | 0.065 232 40.9 (+33.1)
CAS(20,16)SCF —153.814 502 —153.758 254 | 0.056 248 35.3 (+27.5)
NEVPT2/CAS(20,16) | —154.167 433 —154.101 856 0.065 577 41.2 (+33.4)
Mk-MRCCSD(T) %4 - - - 7.8
Experiment 9° — - —~ 1.6-10
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Table 2: Energetic stability of the monocyclic and bicyclic forms of the pyridyne
molecule. Differences with respect to the Mk-MRCCSD(T) reference value are given

in parentheses.

Method® Total energy [Hartree| AE (bicyclic,monocyclic)
monocyclic bicyclic [Hartree| [keal /mol]

PS2a-AP1roG —245.806 197 —245.797 390 | 0.008 807 5.5 (—3.3)
PS2¢c-AP1roG —245.822 958 —245.798 196 | 0.024 763  15.5 (+6.7)
voo-AP1roG —245.823 951 —245.799 810 | 0.024 140 15.2 (+6.4)
MP2 —246.414 371 —246.396 546 | 0.017 825 11.2 (+2.4)
CAS(8,8)SCF —245.500 591 —245.467 299 | 0.033 291 20 9 {+12 1)
NEVPT2/CAS(8.8) | —246.403 581 —246.393 769 | 0.009 812 2 (—
CCsSD% - - —5 6 (— 12 4)
tailored CCSD!! : - 8 (—2.0)
tailored CCSD(T) ! - - 9 0 (+0.2)
Mk-MRCCSD(T) ¥ : - - 8.8

3 In APlroG, MP2, CASSCF and NEVPT2 calculations we used the same geometries as in
Ref. 97

of the ground and transition state of cyclobutadiene are displaved in Figure 2.
' W (=]

}3’}1}3’}3’}1’ T3
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Ground state of cyelobutadiene Transition state of evelobutadiene

Figure 2: Valence occupied voo- and PS2-AP1roG molecular orbitals for the rectan-
gular and square (transition state) geometries of cyclobutadiene. The voo-, PS2c-
and PS2a-AP1roG optimization techniques yield qualitatively the same molecular
orbitals.

In contrast to PS2c-, PS2a-, and voo-AP1roG, the PS2 optimization and its conver-
gence behavior are sensitive to the initial guess orbitals. Specifically, we observed
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that PS2-AP1roG tends to alleviate symmetry-breaking and leads to more delocal-
ized molecular orbitals if localized orbitals are used as initial guess. However, the PS2
orbital optimization scheme suffers from convergence difficulties for larger molecular
systems, which can be related to the severe approximations made in the PS2 or-
bital gradient. By contrast, the convergence of PS2a- and PS2c-AP1roG is more
robust. While the PS2 orbital optimization leads to faster and smoother convergence
when (delocalized) canonical orbitals are used as initial guess, PS2a-, PS2c-, and
voo-AP1roG converge faster when localized orbitals are provided as starting orbitals.
Although PS2- and PS2a-AP1roG require parts of the three-particle reduced den-
sity matrix for the calculation of the orbital gradient, all presented AP1roG orbital-
optimization schemes are limited by the four-index transformation of the two-electron
repulsion integrals that scales as O(N®). We should note that a level shift had to
be applied to the orbital Hessian in the PS2a-approach so that smooth convergence
could be achieved. This, however, destroys the quadratic convergence. Furthermore.
convergence difficulties of all non-variational orbital optimization schemes might be
attributed to our pragmatic assumption of restricting the projection manifold to
singly-pair excited determinants. This problem could be alleviated by including also
higher pair excitations. In practical applications, we, therefore, recommend voo-
AP1roG because of its stable convergence and its robustness against the initial guess
orbitals for larger molecular systems (see also [H6,H7] for additional examples).
The non-variational orbital-optimization techniques, however, can be used to dodge
local minima if convergence difficulties are encountered in the variational orbital-
optimization scheme.

Finally, our studies on multi-reference problems support that orbital-optimized
AP1roG can be considered as an alternative to standard quantum chemistry methods.
For the systems investigated in [H6-H8|, PS2a-, PS2c- and voo-AP1roG approaches
provide lower total electronic energies than CASSCF and yield energy splittings that
are considerably closer to NEVPT2 or multi-reference CC reference data.

c.4 Assessing the accuracy of geminal-based wave functions using con-
cepts of quantum information theory

In the previous section, we scrutinized that AP1roG combined with an orbital opti-
mization protocol can reliably model strongly-correlated systems, even in molecules
with multiple degenerate single-particle states. However, most of the analysis pre-
sented so far was based on energetic arguments or one-body correlation functions like
occupation numbers, neglecting any in-depth analysis of the AP1roG wave function.
In our follow-up publication [H3], we scrutinized how reliably AP1roG can approx-
imate the (exact) electronic wave function for one-dimensional systems where quan-
tum fluctuations have a more pronounced role. Specifically in [H3], we use concepts
of quantum information theory to assess the accuracy of electronic wave functions
in terms of orbital entanglement and orbital-pair correlations, %98-100:1007103 A we
outline in our perspective article [H5], these measures are particularly instructive to
dissect electron correlation effects, 499 elucidate chemical reactions, 101104109 detect
changes in the electronic wave function, %112 and define active orbital spaces. 113114
In this section, we will utilize orbital correlations to dissect electron correlation effects
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captured by the AP1roG model. Our orbital entanglement and correlation analysis
exploits two entropic measures, the so-called single-orbital entropy and orbital-pair
mutual information, to quantify the entanglement of and the correlation between
orbitals,

The entanglement entropy of orbital i, also called single-orbital entropy, can be cal-
culated from the eigenvalues of the one-orbital reduced density matrix wa;i, 119

4
8 = — z Wai INWags. (7)
a=1

The single-orbital entropy is thus the von Neumann entropy of the reduced density
matrix of the orbital of interest whose elements can be calculated from the one-
and two-particle reduced density matrices [H5], 77 and I''?, where for a given wave
function |¥)

(¥|aaq|P)
- D
Vg ) (18)
and L.
oo _ (labalasar|¥) -

(wje)

or from generalized correlation functions. %1% The one-orbital reduced density ma-
trix p; is spanned by the basis states of the one-orbital Fock space (|—), [#), [$), #))
and is thus a 4 x 4 matrix. Similarly, the entanglement of two orbitals is quantified
by the two-orbital entropy s; ;,

16
8ii=— Z Wasi,g lnwa;i,j: (20)

a=1

where wq,i,; are the eigenvalues of the two-orbital reduced density matrix p; j, which
is defined in terms of basis states of a two-orbital Fock space (16 possible states in the
case of spatial orbitals). In contrast to p;, the matrix elements of p; ; can be written
in terms of the elements of the 1-, 2-, 3-, and 4-particle reduced density matrices, 7%,
e, TP, and Tio s with

(m[aza;aiauatasﬂ[’)

oy )

par __
Fstu e

and

ppars _ (¥|alalalalaya,a,a:|¥)
tuvw (lIl|lIJ>
Given s; and s; j, we can quantify the correlations between two orbitals i and j by
the orbital-pair mutual information, 9115116

(22)

Ii|j=5:i+5j_3i,js (23)

which includes correlations of both classical and quantum origin. It is generally
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accepted that the mutual information measure pairwise correlations. In the follow-
ing, we will briefly discuss the simplifications that can be made when dealing with
seniority-zero wave functions, which allow us to evaluate the one- and two-orbital
reduced density matrices with no additional cost compared to the optimization of the
AP1roG wave function [H3,H5].

c.4.1 Correlation functions for seniority-zero wave functions

If the electronic wave function is a Cl-expansion with pair-excited Slater determinants
only, that is a seniority-zero wave function, p; and p; ; have a particular simple form.
Restricting the wave function expansion to either doubly-occupied or unoccupied
orbitals, the 4 x 4 matrix of p; reduces to a 2 x 2 matrix, while the 16 x 16 matrix
representation of p; ; becomes a 4 x 4 matrlx Furthermore, for seniority-zero wave
functions, we can use the relations 75 = 75 = and TPy =153 B “ U7 (5 is equivalent
to p;) so that only the 1- and 2-part1cle 1educed dens1ty matlcles are required to
determine p; and p; j. Specifically, we have

_(1=4 0
w=("2" ) (24)

for the seniority-zero one-orbital RDM expressed in the basis {—4t}, and

1-7-y+0% o0 00
0 yi-1% T
Pji = _,-f' j ”ﬁ (25)
0 -Ti w-Ii O
0 0 0 IV

for the seniority-zero two-orbital RDM expressed in the basis {———44F—4F4}. We
should note that, for a seniority-zero wave function, the maximum value of s; is In2
(in contrast to In4 for the general one-orbital RDM).

For AP1roG, the response 1- and 2-particle RDMs are used to construct p; and p; ;
and are defined as

= (Po|(1 +A)e” Papa eTr|@o) (26)
and 5l
P4 = (Bp|(1+Ae” va;aqasa.refv@o), (27)

where A = 3., /\gazag aza, is a de-excitation operator with Lagrange multipliers A{
obtained by solving eq. (5). Furthermore, due to the special structure of the wave
function, the only non-zero elements are 47, [P, and I'§. We should note that the
response density matrices are not Hermitian a.nd, in general we have I'#d # I'tP

The deviation from Hermiticity of the response density matrices is an artt,fa(,t of
the truncation of the full cluster operator and disappears if the full cluster operator
is taken in the Coupled Cluster ansatz. As the AP1roG method uses, however, a
truncated cluster operator, we cannot exclude non-symmetric two-particle response
density matrices. Furthermore, if the response density matrices are not symmetric
and are thus not N-representable, the resulting eigenvalues of p,, might result in

um.l-ut\m —P)c:‘LL
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Figure 3: Deviation of the voo-AP1roG
total energies from exact values for differ-
ent strengths of the repulsive on-site in-
teraction for the 1-D Hubbard model with
periodic boundary conditions for Ngjtee =
6,10,14,50,122. The exact values for
small U (U < 0.001t) for Ngites = 50,122

could not be converged.
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Figure 4: Percentage of the correla-

tion energy %s for different strengths
of the repulsive on-site interaction
in the half-filled 1-D Hubbard model
with periodic boundary conditions for
Nates = 6,10,14,50,122 captured by
voo-AP1roG. The exact values for small
U (U < 0.001¢) for Ngites = 50, 122 could

not be converged.

negative values for orbital pair p, g. However, we haven’t observed any problems with
N-representability of the response density matrices if the orbital basis is optimized
within the AP1roG method. Only minor N-representability issues have been observed
when using canonical Hartree-Fock orbitals in the strong correlation regime with
negative eigenvalues of order 10~% or much smaller. Since negative eigenvalues are
unphysical, we have discarded them when calculating the correlation functions.

c.4.2 Orbital-pair correlations in strongly-correlated systems
In the following, we will briefly discuss the correlations between the one-particle
functions that are used to construct the geminals. Specifically, we will scrutinize how
accurately the AP1roG model can reproduce orbital-pair correlations and orbital-
entanglement in the one-dimensional Hubbard model with periodic boundary condi-
tions,
. ¢ _
Hywo =t ) (agjﬂ}aaja + ﬂja“(jﬂ)a) +U Y njrnjy, (28)
b J
ae{Tsi—}

where the first term describes nearest-neighbor hopping, while the second term rep-
resents the repulsive on-site interaction. nj, = a;,0, is the local number operator.
It is well-known that the one-dimensional half-filled Hubbard model for U = 0t is
gapless, where all four local basis states (|—),14),}#),[4)) have equal weights 1 and
hence the site entropy s; = In(4). For U > 0t, the charge gap opens and the weight of
the unoccupied and doubly-filled basis states decrease. In the large U/t — oc limit,
only the |4) and |4) states have weights of 0.5 with s; = In(2) as the model becomes

equivalent to the spin-1/2 Heisenberg model and the ground state is an antiferromag-

Neboryer "Bk
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netic state. Therefore, a wave function restricted to electron-pair states (=) and
|4)) cannot properly describe the correlations in both the large U /t limit and, to a
smaller extent, for small U/t using the local on-site basis. To properly model such
wave functions, we have to change the basis, which allows us to describe correlations
of the one-dimensional half-filled Hubbard model with only unoccupied and doubly-
filled basis states. Such a basis can be obtained self-consistently within the AP1roG
method as described above. Note that the correlation and entanglement measures
are basis dependent and thus the one-site(orbital) and two-orbital correlations within
the optimized AP1roG basis will differ from those in the local on-site basis. In order
to assess the accuracy of AP1roG in describing orbital-pair correlations of the one-
dimensional half-filled Hubbard model, we performed DMRG calculations using the
optimized AP1roG basis. As an example, we will only investigate orbital correlations
in the one-dimensional Hubbard model with 14 sites. Additional numerical results

can be found in [H3].

U = 8t, 5; = 1.205 U = 8t, s; = 0.570 U =20t s; =1.292 U = 20t. 5; = 0.673

DMRG AP1roG DMRG APlroG

Figure 5: Orbital-pair mutual information for the half-filled 1-D Hubbard model with
periodic boundary conditions, 14 sites, and different on-site interaction strengths for
the optimized AP1roG basis. The single-orbital entropy is site-independent and given
below each figure. The strength of the orbital-pair correlations for both the DMRG
(left panel) and AP1roG (right panel) correlation diagrams are color-coded: black
lines indicate strong correlations, while green lines indicate weak correlations.

Before scrutinizing orbital-pair correlations, we will first compare total and correlation
energies obtained by the variational orbital optimized (voo-)AP1roG model with ref-
erence data obtained from the solution of the Lieb-Wu equations!® (see Figure 3 for

Ndooyen Rplde
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Naites = 6, 10, 14,50, 122) [H8]. voo-AP1roG can reproduce the exact total energies
in the limit of zero and infinite (repulsive) on-site interaction. The largest deviations
from the exact solution (up to 0.075¢ per site) are found for the intermediate region of
the on-site interaction, that is, for 2t < U < 50t. Figure 4 shows the percentage of the
correlation energy captured by voo-AP1roG calculated as %k = %fo.—'ﬁ};;{-ﬁ -100.
In the limit of zero and infinite U, the voo-AP1roG model becomes exact; for U = 0

the wave function can be exactly described by a single Slater determinant and thus
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Figure 6: Decaying values of the mutual information for the half-filled Hubbard model
with 14 sites using the optimized AP1roG orbital basis (a). I;; is sorted with respect
to the DMRG reference values so that each value of I;); is shown for the same orbital
pair ¢ and j in both DMRG and AP1roG calculations. Eigenvalues of the (b) one-
orbital reduced density matrix and (c) two-orbital reduced density matrix for the
half-filled Hubbard model with 14 sites obtained in DMRG and AP1roG calculations
using the optimized AP1roG orbital basis. The eigenvalues of p; ; for each pair i, j
are ordered as in (a). Red lines and symbols indicate AP1roG data, while blue lines
and symbols mark the corresponding DMRG results.
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the correlation energy approaches zero, while for U — oc, the quantum state can
be represented by the perfect pairing wave function. For growing (repulsive) U, the
percentage of the correlation energy covered by voo-AP1roG increases gradually (see
Figure 4). Featuring mean-field-like scaling, voo-AP1roG can recover about 71% of
the correlation energy in the weak interaction regime, about 80% for intermediate in-
teraction strengths, and approximately 93% in the case of strong on-site interaction
for all chain lengths studied.

Figure 5 shows the orbital-pair mutual information and the single-orbital entropy ob-
tained from DMRG (left panel) and AP1roG (right panel), respectively, for different
strengths of U for the optimized AP1roG basis. For all investigated values of U,
AP1roG can reproduce the most important orbital correlations (cf. the black/blue
lines in Figure 5). Weaker orbital correlations (Byy < 10~2) are, however, underes-
timated for small U/t if the wave functions is restricted to the seniority-zero sector.
For increasing repulsive on-site interactions U > 4t, AP1roG gradually overestimates
orbital-pair correlations compared to the DMRG reference distribution (cf. increas-
ing number of red/blue lines). The observed overcorrelation of AP1roG for increasing
U/t is also visible in the decaying values of I;; shown in Figuree 6(a). Thus, restrict-
ing the wave function to the seniority-zero sector results in an overestimation of the
medium-sized and weak orbital-pair correlations.

If the orbitals, and thus the reference determinant, are optimized, AP1roG can accu-
rately describe the largest orbital-pair correlations in all investigated systems, misses,
however, a large fraction of the weaker orbital-pair correlations. In the strong corre-
lation limit, AP1roG considerably overestimates intermediate and weaker orbital-pair
correlations and results in a prolonged plateau of the mutal information. This over-
correlation can be explained by the eigenvalue spectra of p; (one-orbital reduced
density matrix) and p; j (two-orbital reduced density matrix), which are used to de-
termine the orbital-based correlation functions. While in the weak correlation limit,
the eigenvalues corresponding to singly-occupied states are (orders of magnitudes)
smaller than those corresponding to doubly-occupied or empty states, their weights
gradually increase when we approach the strong correlation regime. Specifically, in
the strong correlation limit, singly-occupied states become important and need to be
included in the wave function model to accurately describe the spectrum of p; and
pi,; even if the orbital basis is optimized (see Figure 6).

We should emphasize that if the one-particle functions are not optimized and the
Hartree Fock determinant is taken as reference determinant in the AP1roG ansatz, all
orbital-pair correlations are smaller than the DMRG reference values. Thus, overcor-
relation is introduced through the optimization of the AP1roG basis, which minimizes
the total electronic energy, but simultaneously deteriorates orbital-pair correlations
(see also [H3]| for a complete picture). Finally, for molecular geometries around the
equilibrium structure, both I;); and the eigenvalue spectra of p; and p;; suggest
that AP1roG provides accurate zero-order wave functions (with and without orbital
optimization) where the missing orbital-pair correlations could be accurately mod-
eled using a posteriori approaches for weak electron correlation (see again [H3] for
a complete picture). To conclude, our orbital correlation analysis confirms that the
accuracy and reliability of a quantum chemical model cannot be assessed by compar-
ing electronic energies only (total, relative, or correlation energies). To remedy this
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issue, quantum entanglement and correlation measures can provide deeper insights
into and understanding of electronic structures.

c.5 Capturing dynamic correlation beyond electron-pair states

As all other geminal-based models, AP1roG misses a large fraction of weak (dy-
namic) electron correlation effects. To address this problem and account for weak
electron correlation effects in the geminal reference wave function, various a pos-
teriori corrections have been proposed. These include models based on single- and
multi-reference Perturbation Theory, ?3:57:73:119:120 Extended Random Phase Approx-
imation, %58 (Linearized) Coupled Cluster theory,?®™ and Density Functional The-
ory. 121122 Tpy the case of AP1roG, dynamic correlation was included using Pertur-
bation Theory, !¢ single-reference Coupled-Cluster theory,*” and Density Functional
Theory. 121122 Iy our work, we focused on two different corrections schemes: Dynami-
cal correlation was included using (i) Perturbation Theory [H1] and (i) a Linearized
Coupled Cluster correction [H4]. In general, the dynamic energy corrections we
propose allow us to approach chemical accuracy in many molecular systems. The
resulting AP1roG-based methods outperform most conventional Coupled Cluster ap-
proximations, like CCSD, LCCSD, and BCCD, featuring a similar or lower compu-
tational scaling at the same time. In the following, we will briefly introduce the
dynamic energy corrections we developed. All methods below, including numerical
tests, are presented in [H1,H4].

c.5.1 Second-order perturbation theory corrections

One drawback of multi-reference Perturbation Theory is the arbitrariness of the theo-
retical model. For example, there are different choices for the zero-order Hamiltonian
Hy, the dual state (F| in the projector, and the choice of the projection space. '** Poor
choices may lead to technical difficulties and unphysical solutions. Specifically for the
AP1roG wave function, two different PT models have been proposed that allow us to
describe electron correlation effects beyond electron pairs. ' While these approaches
provide reliable spectroscopic constants for some first-row diatomic molecules, their
performance deteriorates when moving to heavy-element containing compounds like
actinide species. To scrutinize the performance of a perturbation theory correction for
molecules where both strong and weak correlation is important, we developed various
perturbation theory models that feature different selections for the zero-order Hamil-
tonian Hp, the dual state (¥|, and the projection space, while the zero-order wave
function is restricted to the AP1roG reference function of eq. (1), [2(?)) = |[AP1roG).
Furthermore, in the derivation of all PT models, we will use the quantum chemical
Hamiltonian in its normal product form shifted by the correlation energy of AP1roG

E((;gzr (the shift in energy is indicated by “),
Hy = H — (®o|H|®0) — EQ)
= (Ho — (0| Ho|®o)) + (V — (&o|V|®0) — EQ))
= (Ho)n + V4, (29)
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where the quantum chemical Hamiltonian H is divided into a zero-order contribution
Hy and a perturbation V. It is convenient to rewrite H into a sum of a one- (Hj)
and a two-electron (Ha, here indicated by W) part,

% 3 x 1
H=H +W= Zh.pqa;f,aq +3 Z |r3)a alasa,. (30)

Pq pqrs

In the above equation, h,, and (pg|rs) are the one- and two-electron (written in physi-
cists’ notation) integrals, respectively, determined for the one-particle basis functions
p.q.7. 5. We should note that, in our work, we restrict Hy to be a one- -body operator
so that the normal-product form of the perturbdtlon V=H-H, can be written as an
OI.)E'I'dtDI shifted by the AP1roG correlation energy, VN Vi — B (again indicated
y “'”), as we have E). = (®|Wx|AP1roG). Introducing a shifted perturbation
operatm V.’\ is equivalent to neglecting contractions (or diagrams) that correspond
to the AP1roG correlation energy in the PT equations, whic h will be indicated by
the " in the sum of the WJ\ operator.
As in conventional Rayleigh-Schrédinger PT, the exact wave function can be written
as an order-by-order expansion, |U) = |AP1r0G) + A @M) 4., where A is the order
parameter. The first-order correction to the wave function is expanded in a set of
Slater determinants |®;),

|‘I’m) = th@p)‘ (31)
P

and forced to be orthogonal to the zero-order wave function, here, [AP1roG),
(¥ |AP1roG) = 0. (32)

This orthogonality constraint restricts the choice of the projection space used for
the expansion of [¥(V)) (and higher orders). By construction, all pair-excitations
with respect to |®g) have to be excluded as they don’t satisfy (‘I’ |AP11‘0G) = 0.
Similarly, introducing an order parameter A in the Hamiltonian H = Hy+ \V and
equating coefficients of powers of A, we obtain the zero-, first-, and higher-order PT
equations. Specifically for the first-order correction to the wave function, we have to
solve

(Ho)n|®™V) + V§|AP1roG) =0
Z t,(Ho)n|®,) + Vi |AP11oG) = 0. (33)
p

Since we have introduced a shifted normal-product Hamiltonian, the zero- and first-
order energy corrections vanish,

1 -
EO L p) = M(WHAPMG) =0, (34)

where (0| is the dual of the unperturbed state |AP1roG). Specific choices for (0] will
be considered below. The first non-zero correction to the energy is of second-order and
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can be calculated from the first-order wave function and the shifted normal-product
perturbation Hamiltonian,
) _ SV -
(‘IJ|AP11"0G)

Before we focus on possible choices of (Ho)y and Vi, as well as (¥, we will define
our projection space used in the expansion of [¥'1)) in eq. (31). Following previous
PT models, the projection space will contain all possible excitations with respect to a
reference determinant. This reference determinant is, however, not arbitrary, but re-
stricted to the reference determined of AP1roG, |®o) of eq. (1). We should emphasize
that |®g) is not equivalent to the Hartree-Fock determinant as in conventional CC
theory. but adjusted during the optimization of the AP1roG wave function. Choosing
|®o) as reference determinant, the first-order correction can be written as

1w M) = T|®o), (36)

where T is some excitation operator that substitutes electrons from the occupied to
the virtual space with respect to |[®g). Furthermore, we will restrict T to contain
double excitations without electron pairs, T = T}, as well as single and double exci-
tations, T = T1 + Tg. If only double excitations are included, the excitation operator

is specified as
oce virt

— Z Z tabEm Ebj- (37)

ij ab

where E,; = ala; + al lLa; is the singlet excitation operator and the perturbation
amplitudes f‘“’ are symmetric with respect to pair-exchange, i.e., t"b = f"“ Similar
to our notatlon of the shifted normal-product Hamiltonian, the prlme in the above
summation indicates that pair-excited determinants are excluded in the excitation
operator, i.e., t““ = 0. Exclusion of pair-excitations fulfils the orthogonality condition
eq. (32). If the excitation operator contains both single and double excitations, the
single excitations can be accounted for by adding

occ virt

=YY #E. (38)

to the double excitation operator. Choosing eq. (31) as the first-order correction
to the wave function with excitation operators as defined in egs. (37) and (38), the
corresponding perturbation amplitudes are then obtained by solving

> t0(Bgl (Ho) n|®p) + (Bg|Vi|AP1roG) = 0. (39)

P
Note that the above equations depend on the partition of the Hamiltonian H into the
zero-order and the perturbation part as well as the projection manifold, but not on the

choice of the dual state (¥]. In the following, we will consider different partitionings
of H as well as two choices for (¥].

\\']c.l' vy r?\){tt’b
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In all Perturbation Theory models, the f:i’o Hamiltonian was constructed from the
Fock operator,

F=3% (hm + Y ((pillqi) + <;m‘-|qe'>)) ahag =Y fraahaq, (40)
i Pq

pq

where (pi||gi) are the two-electron integrals in physicists’ notation containing the
Coulomb (pi|qi) and exchange (pilig) terms, and included either only the diagonal or
both the diagonal and off-diagonal inactive Fock operator.

Choosing a diagonal (Hy)n Hamiltonian. If (Ho)w is restricted to the diagonal
of the inactive Fock operator, the zero-order Hamiltonian reads

(Ho)v = Ef = fonlajap}, (41)
r
while the perturbation becomes (cf. eq. (29))
(7t 0 i 1 |
Vi=Fy+Wy= z frelabaq} + 5 Z '(pqlrs){alalasa,}. (42)
pFq pgrs

Eqs. (41) and (42) are then substituted into eq. (39) to solve for the PT amplitudes.
Note that, in the case of a diagonal zero-order Hamiltonian, the PT amplitudes are

obtained from a set of uncoupled equations.

Now. we will consider two different choices for the dual state. First, consider (¥| to be
restricted to the AP1roG reference determinant (®o|. In this case, we can straight-
forwardly evaluate the overlap (®o|AP1roG), which equals 1 due to intermediate
normalization of the AP1roG wave function. The expression for the second-order
energy correction E®) given in eq. (35) thus simplifies to

E® = (@|Vy[¥W). (43)
Specifically, the energy correction for T= ’fé is given as
(2 g . s

EP =Y t2((ijllab) + (ijlab), (44)

tajb
where the sum runs over spatial orbitals only, while for single and double excitations

we have (again using spatial orbitals)
ER =2 fuatf + Y 15 ((igllab) + (ijlab)). (45)

ia iajh

We should emphasize that this PT model is equivalent to the PTa model pre-
sented in ref. 119. Note, however, that pair excitations are not excluded in ref.
119 and that the full Hamiltonian H is taken as the perturbation Hamiltonian so
that B = (®o|H|¥V). Since the PTa amplitude equations for the pair excitations

Makas Sopplk-
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vanish (as they equal the AP1roG amplitude equations), the PTa energy corrections
is nonetheless determined from eq. (43). For reasons of consistency, we will abbre-
viate these PT models using a single determinant (SD) as dual and a diagonal (d)
zero-order Hamiltonian as PT2SDd. The choice of the excitation operator will be
indicated in parentheses, that is, PT2SDd(d) for double excitations and PT2SDd(sd)
for both single and double excitations.

Our second choice for the dual state includes (AP1roG|. In this case, we have to
evaluate terms as (AP1roG|AP1roG) in the energy expression, which becomes com-
putationally intractable for large systems. In order to arrive at a computationally
feasible model, we will follow ref. 119 to, at least partially, eliminate the overlap
(AP1roG|AP1roG) in the PT equations and energy expression. For that purpose,
we redefine the zero-order Hamiltonian of eq. (41) by introducing the inverse of the
overlap (AP1roG|AP1roG) as a scaling factor,

i i, f e
(Ho) = F = g APTroGIAPToG) (%) = § fowlajap}.  (46)

By changing the zero-order Hamiltonian of eq. (41), we also have to adjust the cor-
responding perturbation part given in eq. (42),

n i = - - 1
J’:{f = FN I Fg’ o+ ‘[/VA e Z(qu - fppépq){a;aq} + 5 Z ’(PGP‘S) {a;a;asal‘}' (47)
»q pgrs

To fully avoid the evaluation of the overlap (AP1roG|AP1roG) in the PT amplitude
equations eq. (39), the inverse of the AP1roG wave function overlap will be absorbed
in the PT amplitudes. Thus, the first-order wave function contains scaled amplitudes,

ey t -
1y = P =
Sl 2;-: (AP1roG|AP1roG) @) Zp: tp|®p)- (48)

By substituting eq. (46) into eq. (39) and introducing the scaled PT amplitudes
from eq. (48), we can eliminate the wave function overlap from the PT working
equations. Furthermore, scaling the PT amplitudes by the inverse of the over-
lap (AP1roG|AP1roG) restores the zero-order Hamiltonian of eq. (41) and we get
(Ho)n = F§. Note that the wave function overlap is still present in the perturbation
part V. Due to the structure of the zero-order wave function and the choice of
the projection manifold, the diagonal part of the modified Fock operator in eq. (47)
does not contribute to the PT amplitude equations and the resulting perturbation
reduces to Vi, = Fy + Wj. Since we have chosen (AP1roG| as dual, the second-
order energy correction is determined from E?) = (AP1roG|V{|¥M) (cf. eq. (35)),
where the first-order correction to the wave function is calculated from the scaled PT
amplitudes (eq. (48)).

E® =% " £,(AP1roG|Vy |®p). (49)

P

The sum in the above equation runs over all determinants in the projection manifold
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(doubly excited or singly- and doubly-excited determinants). We should note that al-
though we can exactly evaluate the energy correction and the PT equations, the zero-
and first-order energy corrections eq. (34) do not vanish. However, we can neglect
the weights of the (AP1roG) amplitudes beyond single pair excitations and assume
that E© + B ~ 0.119 We will label this PT model as PT2MDd as it uses a multi-
determinant (MD) wave function as dual and a diagonal (d) zero-order Hamiltonian.
Furthermore, PT2MDd(d) indicates that the excitation operator contains only double
excitations (without pairs), while in PT2MDd(sd) both single and double excitations
are included in 7.

An Off-diagonal one-body zero-order Hamiltonian. If the off-diagonal terms
of the Fock operator are included in the zero-order Hamiltonian of eq. (41), we arrive

at
(Ho)v = F§ + E3 = frofabag}: (50)
Pa

Then, the perturbation part V = H—H, in its (shifted) normal-product form contains
only the two-electron part,

- 1 =
V= 5 Z "(pq|rs) {a;a;asar}. (51)
qu‘S

To obtain the working equation for the PT amplitudes, we substitute egs. (50) and
(51) into eq. (39). Note that, in contrast to the PT methods with a diagonal zero-order
Hamiltonian, the PT amplitudes are now obtained from a set of coupled equations
and have to be solved iteratively.

If the dual state is restricted to the reference determinant of the AP1roG wave func-
tion, we benefit from the intermediate normalization when evaluating the overlap
(®9|AP1roG). Analogous to PT2SDd-type methods, the second order energy can be
evaluated from eq. (43). Note, however, that only the doubly-excited determinants
directly contribute to the energy correction. Since the perturbation Hamiltonian is
a two-electron operator, the second-order energy correction of the single excitations
vanishes. Single excitations contribute indirectly through coupling to the double ex-
citation manifold in the PT amplitude equations. For both including and excluding
the singles projection manifold, the second-order energy E(?) is thus calculated from
eq. (44). We will abbreviate the PT corrections using an off-diagonal (o) zero-order
Hamiltonian and a single determinant for its dual state as PT2SDo, while the pro-
jection manifold will be indicated in parentheses (d for doubles, sd for singles and
doubles, respectively). X

Similar to the PT methods with a diagonal Hy Hamiltonian, choosing (AP1roG| as
dual forces us to evaluate the wave function overlap (AP1roG|AP1roG), which be-
comes prohibitive for large systems. In order to (partially) remove the wave function
overlap from the working equations, we follow the procedure from above and intro-
duce a scaled zero-order Hamiltonian, where we have to modify both the diagonal
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F§ and off-diagonal F§ Fock operator,
(Ho)n = F§ + F}

f ; |
-3 (AP1r0G|APIroG) {apag} =D Falajac} (52)
P g

Since we use a modified Fock operator as zero-order Hamiltonian, we have to account
for it in the definition of the perturbation part,

i = By —FS — FS + W)
_ . 1 ,
= 3o — foa){ajag} + 5 D "(palrs){ajajasar}. (53)

P.q pars

Analogous to PT2MDd-type methods, the scaling factor in the (Ho)ny Hamiltonian
is absorbed in the PT amplitudes (cf. eq. (48)) so that the zero-order Hamiltonian
in the PT amplitude equations eq. (39) contains only the unscaled Fock operator,
(Ho)n = I:"‘rﬂr + Fg, while the PT amplitudes t, are replaced by the scaled amplitudes
t,. Although we eliminated the wave function overlap in the second-order energy
expression and in the (Hy)x part of the PT amplitude equations, (AP1roG|AP1roG)
still remains in the perturbation part (cf. eq. (53)). In contrast to the PT2MDd-type
methods discussed above, the perturbation V}; contains also modified off-diagonal
elements in the one-electron Fock operator that do not vanish in the PT equations.
Therefore, we have to evaluate the wave function overlap (AP1roG|AP1roG) before
we can determine the PT amplitudes. To obtain a computationally feasible model,
we will approximate the overlap (AP1roG|AP1roG) =~ 1+3 ., |c#|2, keeping only the
quadratic terms in the AP1roG amplitudes. This is usually a good approximation
around the equilibrium as the AP1roG wave function amplitudes are typically much
smaller than 1 (J¢%| < 1). In the vicinity of dissociation, however, this approximation
might be inappropriate as some of the AP1roG amplitudes are close to 1 in absolute
value. In such cases, higher order terms have to be included to approximate the
wave function overlap (AP1roG|AP1roG) appropriately. To keep the PT2 correction
computationally inexpensive, we can assume that (AP1roG|AP1roG) — oo and use
an approximate perturbation Hamiltonian where we disregard the contribution of
Fy. This will result in the PTh model.'*® However, we approximate the scaled off-
diagonal Fock matrix elements by fpq ~ ﬁ}:i%f" neglecting all higher-order terms.

As for PT2MDd, the second-order energy E?) can be determined from eq. (49) with
V,(, defined in eq. (53). Note that in contrast to PT2SDo, the single excitations
directly contribute to the energy correction through both the one- and two-electron
operators in the perturbation Hamiltonian. The PT models with an off-diagonal (o)
H, Hamiltonian and a multi-determinant (MD) wave function ((AP1roG|) as dual
will be abbreviated as PT2MDo, while the projection manifold will be again indicated
in parentheses (d for doubles, sd for singles and doubles, respectively). Note that
pair-excitations are excluded in the projection manifold due to the orthogonality
constraint.

We should emphasize that the PT2MDo model is similar, but not equivalent, to the
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recently presented PTb approach. 1*? In the PTb method, the wave function overlap in
the pertu‘rbation Hamiltonian is neglected, that is, we assume m'f’erC) — 0
so that f,, — 0. By neglecting the scaled components of the Fock operator, the

perturbation Hamiltonian reduces to the full quantum chemical Hamiltonian Vi =
HY;. The second-order energy correction is then given as

E® =Y " £,(AP1roG|Hy |®y). (54)

r

As discussed above, this approximation is appropriate in the vicinity of dissociation,
where the AP1roG wave function amplitudes are close to 1. Around equilibrium,
however, we typically have (AP1roG|AP1roG) ~ 1 and therefore neglecting Fy in
the perturbation Hamiltonian represents a crude approximation.

Furthermore, in PTb theory, pair excitations are not excluded in the projection mani-
fold and the first-order correction of the wave function contains all double excitations.
These pair excitations do not contribute to the energy corrections eq. (54). Their con-
tribution vanishes as the corresponding terms in eq. (54) equal the AP1roG amplitude
equations. However, pair excitations indirectly enter the energy correction by cou-
pling to the remaining PT amplitudes in the PT equations as well as to the pair
excitations of the AP1roG model. Furthermore, we have extended the original PTh
model by including also single excitations in the projection manifold. We also inves-
tigate how the pair excitations in the projection manifold influence the PTb energy
correction. For that purpose we have excluded the pair excitations in the projection
manifold when optimizing the PTh amplitudes. To emphasize the order of the energy
correction in PTh, these PT models are abbreviated as PT2b, while the projection
manifold is indicated in parentheses (d for doubles, sd for singles and doubles, d\p
for doubles without pairs, sd\p for singles and doubles excluding pair excitations).
The computational scaling of all PT corrections discussed above is determined by
the first term of eq. (39). Note that we can introduce suitable intermediates for the
second term in eq. (39) so that summations are performed only once in the beginning
of the calculation. If (Hg)y is restricted to be a diagonal one-body operator, the
computational cost of the corresponding PT models scales as O(0*v?), where o is
the number of occupied and v the number of virtual orbitals, respectively. Choosing
an off-diagonal one-body zero-order Hamiltonian (Hp)n increases the computational
cost to O(0*1?) (see also Table 3). Since we now have to solve a coupled set of
linear equations iteratively, we have to consider an additional prefactor. However,
this prefactor is typically much smaller than v. Thus, PT2SDd and PT 2MDd scale
similar to AP1roG (or conventional electronic structure methods like MP2). while in
PT2SDo, PT2MDo, and PT2b the computational cost increases by a factor of v. All
PT approaches presented in this series of publications are summarized in Table 3 for
comparison.

¢.5.2 Linearized coupled cluster theory with an AP1roG reference func-
tion

A reliable way to account for dynamic correlation effects a posteriori is to use a
multi-reference Linearized Coupled Cluster (LCC) correction. Recently, Zoboki et al.

Veensy- “Bes st



4. Scientific achievements 27

Table 3: Summary of PT models with zero-order Hamiltonian Hy, perturbation v,
dual (¥|, and excitation operator T. All operators are defined in the text. The
computational scaling is given in the last column.

Model Hy Vv &4 T scaling
PT2SDd Fi Fg + Wy (o] T4, Ty + T3 O(0%v?)
PT2MDd Fg Fg + W}, (AP1roG| Ty, Ty + T} O(0v?)
PT2SDo  F§ + F% Wi (®o] T4, Ty + T O(0%v%)
PT2MDo  Fd + S Fy — Fn + W) (APlroG| 75T+ 15 O(0%v?)
PT2b P+ Fg H, (AP1roG| To, T}, T1 + T2, Th + T O(0%v?)

presented an LCC correction based on an APSG reference function and demonstrated
the good performance of the APSG-MRLCC approach.®® Their findings encouraged
us to develop an LCC correction based on an AP1roG reference state. For an LCC
correction, dynamic correlation effects are built in the electronic wave function a
posteriori using an exponential Coupled Cluster ansatz,

|¥) = exp(T)|AP1roG), (55)

where T' = S, tuTy is a general cluster operator. The corresponding time-
independent Schrodinger equation reads

H exp(T)|AP1roG) = E exp(T)|AP1roG). (56)

Multiplying from the left by exp(—T) and truncating the Baker-Campbell-Hausdorff
expansion after the second term,

exp(=T)H exp(T) ~ H + [H,T), (57)
we arrive at the Linearized Coupled Cluster Schréodinger equation
(H + [H,T))|AP1roG) = E|AP1roG). (58)
To obtain the cluster amplitudes t,, we multiply from left by (v|
(v|(H + [H,T))|AP1roG) = 0, (59)

where we assume that the excitation operator 7, creates states orthogonal to
|[AP1roG), (v|AP1roG) = 0. The projection manifold {} will depend on the choice
of the cluster operator T’ (vide infra).

The energy can be calculated by projecting against the reference determinant of
|[AP1roG), i.e., multiplying eq. (58) by (®o| and using intermediate normalization,

(®o|(H + [H,T))|AP1roG) = E. (60)

The only constraint on the cluster operator we have made so far is that it creates
states that are orthogonal to the AP1roG reference function. One suitable choice
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for the cluster operator is to include substitutions between the occupied and virtual
orbitals with respect to |[AP1roG). If only double excitations are included, the cluster
operator as defined in eq. (37) fulfills the orthogonality condition, (v|AP1roG) = 0.

To arrive at a computationally feasible model, we will further restrict the cluster
operator of eq. (37) to include only excitations with respect to the reference deter-
minant, thereby excluding possible redundancies in excitations and amplitudes. The
projection manifold then contains all doubly-excited determinants with respect to
|®o). The doubles amplitudes {tf}‘} are obtained by solving a linear set of equations

Bu+ ) Auuty =0, (61)

where the sum runs over all double excitations (without pair excitations) and

By = Bigjp = (;3‘-’|JEI|AP11'0G), while A, = Aiajbkeld = %(?JH{H, E..E4)|AP1roG).
Note that the bar over the projection manifold indicates that the final working equa-
tions will be spin-summed. The energy correction E'D) with respect to the AP1roG
reference wave function can be evaluated from eq. (44), where the coupled cluster
doubles amplitudes have to be substituted for {t;‘;’ A

Similar to our PT models. the contribution of single excitations can be accounted for
by including eq. (38) in the cluster operator. Thus, the singles projection manifold
contains all singly-excited determinants with respect to |[®). The single and dou-
ble amplitudes are obtained by solving a coupled set of linear equations equivalent
to eq. (61) where u and v now run over all single and double excitations. The en-
ergy correction with respect to the AP1roG reference value can be evaluated using
eq. (45). Note that, in contrast to canonical Hartree—Fock orbitals, the Fock matrix
is not diagonal when the orbitals are optimized within AP1roG. In the AP 1roG-LCC
approach, the single excitations thus contribute both directly to the energy correc-
tion and indirectly through coupling to the doubles equations. We will abbreviate
the LCC correction using T’ = T4 as AP1roG-LCCD, while AP1roG-LCCSD indicates
that the cluster operator contains single and double excitations, T=7 +T
Finally, we should note that the LCCD and LCCSD corrections as outlined above are
similar, but not equivalent to the frozen-pCCD (fpCCD) and fpCCSD approaches,
respectively. %7 Specifically, in fpCC, first the equations for the pair amplitudes are
solved, which in our case is equivalent to solving the AP1roG amplitude equations.
Then, the usual CCD/CCSD equations are solved without allowing the pair ampli-
tudes to change. In AP1roG-LCC, we first solve for the AP1roG amplitudes, which
is equivalent to the first step of a fpCC calculation, followed by solving for the re-
maining cluster amplitudes. In contrast to fpCC, our cluster operator is linearized
(¢f., eq. (58)) and thus all higher-order terms are eliminated, while the reference wave
function is |AP1roG) (instead of a single Slater determinant as in fpCC). Choosing
|AP1roG) as a reference function results in additional terms in the amplitude equa-
tions beyond the standard single-reference LCC approach arising from coupling to
pair-excited Slater determinants with respect to [®q). This coupling to pair-excited
Slater determinants leads to additional terms in the LCC amplitude equations that
are also included in the fpCC amplitude equations. Therefore, our LCC approach can
be considered as a simplification of the fpCC method. Specifically, the connection
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between our LCCD corrections and fpCC can also be understood by rewriting the
corresponding Linearized Coupled Cluster Schrodinger equation (58) using explicitly
the exponential ansatz for AP1roG,

exp(=Tp)(H + [H, Tup)) exp(T})|®o) = E|®o), (62)

where Tp is the AP1roG (seniority zero) cluster operator containing only pair exci-
tations and f",lp is the seniority non-zero cluster operator of eq. (37). Note that we
have used the labels p (pair) and np (non-pair) to emphasize the connection to fpCC
methods. The seniority non-zero cluster amplitudes can be obtained by projection
against (v, X e o i

(v|H + [H, Top) + [[H, Tup)s Tp]|®0) = 0, (63)

which further illustrates the coupling to pair-excited Slater determinants generated
by T}, (compared to single-reference Linearized Coupled Cluster). The above equation
can be compared to the amplitude equations of (fp-)CC approaches in, for instance,
Refs. 83.124. Since the most expensive contributions in the amplitude equations
are similar in both AP1roG-LCCD/LCCSD and fp-CCD/CCSD, the computational
scaling of our LCC correction is as O(0®v*), where 0 and v are the number of occupied
and virtual orbitals, respectively.

¢.5.3 Performance of dynamic energy corrections

We have benchmarked the above mentioned models against spectroscopic constants
for multiply bonded diatomics (F,, C,, Ny, BN, CN™, and BN) [H1,H4] and ther-
mochemical data of 15 reactions containing main-group elements extrapolated to the
basis set limit [H1]. Most importantly, combining AP 1roG with the investigated
corrections allows us to reach chemical accuracy in most of the studied systems.

For all investigated diatomics (see Table 4 for C, and CO), PT2SDd and PT25Do
provide equilibrium bond lengths and vibrational frequencies that agree well with
the corresponding reference values. Furthermore, addition of single excitations in the
excitation operator T' does not increase the accuracy of PT2SDd(d) or PT2SDo(d).
In contrast to PT2SDd and PT2SDo, the performance of PT models using a multi-
determinant dual state (PT2MDd, PT2MDo, and PT2b) is less satisfying. Specifi-
cally, these methods provide equilibrium bond distances and vibrational frequencies
that typically deviate most from MRCI-SD/MRCI-SD+Q reference data. Similar to
PT2SDd and PT2SDo, addition of single excitations generally worsens spectroscopic
constants and hence the excitation operator should be restricted to double excita-
tions only. Furthermore, including pair excitations in 7' (PT2b-type methods) does
not significantly affect spectroscopic constants and both models (with and without
pair excitations) yield similar values for re and we.

In contrast to equilibrium bond distances and vibrational frequencies, the accurate
prediction of dissociation energies D, is more challenging. In general, none of the
proposed PT models can reliably predict potential energy well depths, which differ
up to 60 keal /mol from MRCI-SD/MRCI-SD+Q reference data. Note that most PT
corrections (PT2MD and PT2b) diverge in the vicinity of dissociation and hence
only an estimated dissociation energy is given in Table 4 (indicated by the = in the
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Table). Furthermore, the choice of the approximate AP1roG wave function over-
lap in PT2MDo/PT2b-type methods does not affect the accuracy in spectroscopic
constants. Both PT approaches predict similar equilibrium bond lengths and vibra-
tional frequencies as well as (estimated) dissociation energies De. Thus, including
higher-order terms when calculating (AP1roG|AP1roG) might not cure the observed
divergencies in the dissociation limit.
The performance of the LCCD /LCCSD correction on top of AP1roG is more robust in

Table 4: Spectroscopic constants for the dissociation of the homonuclear dimer Cs and
the heteronuclear dimer CO for different quantum chemistry methods. While for CO the
differences are with respect to MRCI-SD+Q reference data,'*® for Cq, differences are with
respect to MRCI-SD reference data.'?® E.: ground state energy at re.

] Method E. [Exl r. |A] D. [%] we [em™]
APIroG —7558560  1.227(—0.025) 132.9(—8.2) 1780(—56)
AP1roG-PT25Dd(d) —75.80222  1.251(40.001)  160.4(+19.3) 1889(+53)
AP lroG-PT2SDd(sd) —75.81041  1.249(—0.003)  154.6(+13.5) 1915(479)
APlroG-PT2MDd(d) —75.77832  1.239(—0.013) 121.6(—19.5)" 1940(+104)
APlroG-PT2MDd(sd) —75.78630  1.238(—0.014) 115.6(—25.5)" 1963(+127)
AP1roG-PT2SDo(d) —75.81778  1.242(-0.010) 156.5(+15.4) 1919(+83)
APlroG-PT25Do(sd) —-75.81783 1.242(-0.010) 156.4(+15.3) 1919(+83)
AP1roG-PT2MDo(d) —75.79032  1.231(—0.021) 125.9(—15.2)°  2010(+174)

Cz AP1roG-PT2MDo(sd) —75.79108 1.230(—0.022) 119.9(-21.2)" 2019(+183)
AP1roG-PT2b(d) —~75.78350  1.235(—0.017)  127.2(—13.9)" 1938(+102)
AP1roG-PT2b(sd) ~75.79400  1.228(—0.024) 113.0(—28.1)" 2049(+213)
AP1roG-PT2b(d\p) —75.78381  1.231(-0.021)  123.9(—17.2)" 2016(+180)
AP1roG-PT2b(sd\p) —75.79370  1.228(-0.024) 112.9(—28.2)" 2048(4212)
AP1roG-LCCD —75.81125  1.240(—0.012)  139.3(—1.8) 1916(+4-80)
AP1roG-LCCSD —75.81257  1.240(—0.012)  143.0(+1.9) 1926(490)
NEVPT2 ~75.78820  1.244(—0.008)  148.0(+6.9) 1886(4-50)
LCCD _75.82665  1.196(—0.056)  257.1(+116.0)"  2302(+466)
LCCSD —75.89995 1.194(—0.038) 293.0(+151.9)" 2710(+874)
CcCsD —75.77969  1.325(+0.073)  106.0(—35.1)" 1183(—653)
CR-CCSD(T) —75.80395  1.242(—0.010)  152.1(+9.0) 1989(+153)
CR—CC[Q‘S;G —75.81278 1.253(4-0.001)  131.2(—9.9) 1842(+6)
MRCI-SD' —75.78079 1.252 141.1 1836
APl1roG —112.91110 1.116(—0.020) 240.2(—11.6) 2197(+49)
APlroG-PT25Dd(d) —113.16024  1,129(—0.007)  261.2(+9.4) 2028(—120)
AP1roG-PT2SDd(sd) —113.16167  1.133(—0.003)  227.8(—24.0) 2128(—20)
AP1roG-PT2MDd(d) | -113.15041  1.126(—0.010)  236.6(—15.2) 2186(+38)
APlroG-PT2MDd(sd) | —113.15196  1.126(-0.010)  190.7(—61.1)" 2204(+56)
APlroG-PT25Do(d) —113.17603  1.135(+0.001)  253.6(+1.8) 2023(—125)
AP1roG-PT2SDo(sd) | —113.17606  1.132(—0.004) — 2070(—78)
APl1roG-PT2MDo(d) | —113.16343  1.130(—0.006)  242.5(—9.3) 2180(432)

co APlroG-PT2MDo(sd) | —113.16428  1.130(—0.006)  196.2(—55.6)" 2196(+48)
APlroG-PT2b(d) —113.15512  1.129(-0.007) 240.6(—11.2) 2210(+62)
APlroG-PT2b(sd) —113.15718 1.130(—0.008) 184.7(—67.1)" 2188(440)
AP1roG-PT2b(d\p) —113.15425  1.129(—0.007)  240.1(—1L.7) 2196(+48)
AP1roG-PT2b(sd'\p) —113.15638  1.130(—0.006)  184.3(—67.5)°  2188(440)
AP1roG-LCCD —113.17264  1.128(—0.008)  245.4(—6.4) 2265(+117)
APlroG-LCCSD —113.17490 1.130(-0.006)  252.5(+0.7) 2182(+36)
CASSCF '#7 —112.91158  1.136(+0.000)  251.1(-0.7) 2166(+18)
LCCD —113.16889  1.130(—0.006) - 1954(—194)
LCCSD —113.17802  1.133(—0.003) — 2141(—7)
CCsD —113.16293  1.120(—0.007)  330.8(+79.1) 2219(+71)
CR-CC(2,3) —113.18114 1.137(40.001) 332.7(+80.9) 2130(—18)
MRCI-SD1Q =" —113.15580 1.136 251.8 2148

* Estimated dissociation energy.
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predicting spectroscopic constants for all investigated diatomics. Although AP1roG-
LCCSD yields r. and w, that deviate more from MRCI-SD/MRCI-SD-+Q reference
values compared to PT2SDd and PT2SDo results, an LCC correction allows us to re-
liably model dissociation energies for most of the multiply bonded diatomics (Ca, Na,
CN*, and CO). Finally, we should emphasize that AP1roG-LCCSD outperforms all
investigated CC approaches (CCSD, LCCD, LCCSD, CR-CC(2,3)) in predicting dis-
sociation energies for multiply bonded systems compared to MRCI-SD/ MRCI-SD+Q
reference values. Although being a simplified version of CCSD, AP1roG-LCCSD sig-
nificantly reduces the errors of CCSD in dissociation energies (from 35 to 2 keal/mol
for Cy, from 29 to 6 kcal/mol for Fp, from 35 to 6 kecal/mol for Na, from 79 to 1
keal /mol for CO, from 88 to 24 keal /mol for BN; we encountered computational dif-
ficulties for CCSD for the CNT molecule, while AP1roG-LCCSD results in an error
of 2 keal /mol). Thus, AP1roG-LCCSD provides improved dissociation energies com-
pared to conventional CC approaches, while the computational cost remains similar
to CCSD (neglecting the orbital-optimization step).

The standard errors in reaction energies with respect to CR-CC(2,3) reference val-
ues is displayed in Figure 7 for (a) the optimized APIlroG orbital basis and (b)
canonical Hartree-Fock orbitals. In general, the performance of all PT methods can
be divided in three different groups: (i) those with a diagonal zero-order Hamil-
tonian (PT2SDd/PT2MDd), (ii) those with an off-diagonal zero-order Hamiltonian
(PT2SDo/PT2MDo), and (iii) those with an off-diagonal zero-order Hamiltonian and
the full quantum-chemical Hamiltonian as perturbation operator (PT2b-type meth-
ods). The accuracy of the PT corrections with respect to CR-CC(2,3) reference data
increases when going from PT methods (i) to (iii) reducing the RMSE from approxi-
mately 14 keal /mol in PT2SDd,/PT2MDd, to about 5 kcal /mol in PT2SDo/PT2MDo,
to 2 kecal/mol in PT2b-type methods. The choice of the dual state and the inclusion
of single excitations in the excitation operator do not significantly affect the accu-
racy of the PT methods (mean error, root mean square error, mean absolute error,
maximum absolute error). Furthermore, excluding pair-excited determinants from
the projection manifold in PT2b-type methods improves the accuracy of PT2b only
marginally. Since pair-excitations are already described in the AP1lroG reference
function, it might, however, be advantageous to exclude pair excitations from the
excitation operator T' and hence eliminate the coupling to pair excitations modeled
in the AP1roG reference function and pair excitations of the PT method, which both
couple to the remaining PT amplitudes in the PT amplitude equations.

If the optimized natural AP1roG orbitals are replaced by canonical Hartree-Fock
orbitals, only two distinct PT models persist, namely, PT2SDd (with double ex-
citations) and PT2MDd (with double as well as single and double excitations). In
contrast to the natural AP1roG orbitals basis, all PT methods yield similar error mea-
sures in the canonical Hartree-Fock basis with a standard error of about 3 kcal/mol.
Therefore, the optimization of the molecular orbital basis and the AP1roG reference
determinant might be unnecessary if the molecular system is dominated by dynamic
correlation and molecular properties around the equilibrium geometry are considered.
provided dynamic correlation effects are accounted for in the AP1roG model. If the
optimal natural AP1roG orbitals are used in calculations, PT2b-type methods result
in the smallest error measures (around 2 kcal/mol) and thus outperform all other
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Figure 7: Errors in the optimized AP1roG orbital basis (a) and in the canonical
HartreeFock basis (b). The grey bars indicate the standard errors in each basis set.
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PT models. If the orbital optimization step is omitted, PT2SDd/PT2SDo provide
the smallest errors that are similar to PT2b-type methods in the optimized AP1roG
basis (RMSE around 3 kcal /mol).

Finally, a Linearized Coupled Cluster correction with an AP1roG reference function
introduced in [H4] predicts reaction energies that deviate least from CR-CC(2.3) ref-
erence data reducing the RMSE to 1.4 kecal/mol. To minimize the error in AP1roG-
LCC, single excitations are indispensable and have to be included in the cluster op-
erator, both using optimized AP1roG orbitals and canonical Hartree-Fock orbitals.
Most importantly, the AP1roG orbital basis does not need to be optimized if chemical
accuracy (approximately 1 kcal/mol) is desired for predicting equilibrinum properties
of weakly-correlated systems. To conclude, AP1roG-LCCSD provides the most ac-
curate reaction energies with respect to CR-CC(2,3) reference data, outperforming
all investigated PT models as well as conventional electronic structure methods like
MP2, BCC, CCSD, CCSD(T), LCCD, and LCCSD. Furthermore, PT2SDd/PT2SDo
in the canonical Hartree-Fock basis provides the smallest errors among all inves-
tigated PT corrections (slightly better than MP2) and allows us to cheaply model
the thermochemistry of main group elements (O(0?v?)). For strongly-correlated sys-
tems. however, the molecular orbital basis needs to be optimized before a PT25Dd or
PT2SDo correction is applied. Rotating the orbital basis increases the computational
cost due to the four-index transformation and some additional prefactor of the orbital
optimization.

c.6 Targeting excited states

So far. we have discussed AP1roG-based methods that allow us to accurately model
ground-state electronic structures. In this section, we will elaborate on how the
AP1roG ansatz can be extended to target excited states. Our first excited state
models are discussed in [H2]. Most importantly, we have presented the first excited
state extensions for an AP1roG reference function. In the following, we will briefly
summarize our methodology to target excited states within AP1roG.

In order to model excited states in AP1roG, we can exploit the fact that the AP1roG
wave function is equivalent to the pCCD ansatz and employ the equation of motion
(EOM) formalism. 3123129 In EOM-CC, excited states are parametrized by a linear

CI-type ansatz,
="t (64)
I

where the summation is over all excitation operators present in the cluster operator
T as well as the identity operator 75. The operator R is then used to generate the
target state from the initial CC state,

W) = Rexp(T)|@o) = Y _ cufuexp(T)|Po), (65)
"

with |®q) being the CC reference determinant.
To arrive at the EOM-CC working equations, it is convenient to use the normal-
product form of the Hamiltonian, Hy = H — (®o|H|®p). Furthermore, we will
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disregard any excitation properties, like dipole moments, and focus on excitation
energies instead. In that case, we have to solve for the R amplitudes only. Our
target-state Schrédinger equation then reads

HyRexp (T)|®o) = AERexp (T)|®o), (66)

where AE is the energy difference with respect to the Fermi vacuum expectation
value |®¢). Introducing the similarity transformed Hamiltonian in normal-product
form Hy = exp(—T)Hy exp (T) and subtracting the equation for the CC ground
state, we obtain the EOM-CC equations for the R amplitudes,

(A, R)|®0) = wk|®), (67)

where w are the excitation energies with respect to the CC ground state, exp(T)|®o).
The excitation energies are thus the eigenvalues of a non-Hermitian matrix,

0 (@ofFinln)
0 WlFnsmal|®o)]” (68)

where the first row is associated with the CC reference state and the subsequent rows
correspond to the excited configurations » > 0. The EOM-CC working equations may
be solved using, for instance, non-Hermitian extensions of the Davidson algorithm to
determine the lowest-lying excited electronic states.

c.6.1 Electron-pair excitations

Here, we are considering a pCCD reference function [pCCD) (or [AP1roG)) as a
special CC state confined to electron-pair states. As indicated in eq. (1), the pCCD
cluster operator contains only electron-pair excitations, T = ’f‘p = W t;‘a(‘;a; aza;.
In the corresponding EOM model, the R operator is thus restricted to the identity
operator 7y as well as all pair excitations present in the cluster operator Tp‘

Ry =cofo+ Y ¥ Fuainy (69)
ia

where T,z:7 = aza;a;ai creates an electron pair in the virtual orbital a. To obtain the

target-state Schrodinger equation of EOM-pCCD, we have to substitute the general

cluster operator T by the pair-excitation operator 7}, in eq. (66),

Ax Ry exp (1) ®0) = AER, exp (T;)| o). (70)

The R, amplitudes are determined from the EOM-pCCD equations (restricting R to
R, and T to T, in eq. (67)),

[ﬁfﬁ)vﬁp]]@o) = wap|‘I’o)» (71)

where ?:.{f,\?) indicates the similarity transformed Hamiltonian of pCCD, ?:.{(,3) =
exp (—Tp)Hy exp (T},), and wy, are the electron-pair excitation energies. Thus, EOM-
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pCCD allows us to model electron-pair excited states only. In order to target singly
excited or general doubly excited states, we have to extend the pCCD cluster operator
to include excitations beyond electron pairs. This can be done either by changing to
a frozen-pair CCSD '*° formalism or to a Linearized CCSD correction with an pCCD
reference function. However, we will consider a different, cost-effective approach to
account for single excitations in the pCCD model that does not scale as O(n®) as
conventional EOM-CCSD methods. Note that EOM-pCCD scales as O(0%*v?), where
0 is the number of occupied orbitals (equivalent to the number of electron pairs) and
v is the number of virtual orbitals.

c.6.2 Accounting for single excitations
As proposed by Forseman et al.,'®! configuration interaction with only single substi-
tutions (CIS) represents an accurate model to investigate (singly) excited electronic
states, even for large systems. In the CIS method, the reference is a single Slater de-
terminant obtained from an SCF procedure, while the CIS wave function is expanded
as

|CIS) = col®o) + D _ %), (72)

a

with |¢) being a singly excited determinant where the (occupied) orbital of |Pg)
has been substituted by the (virtual) orbital a. Similar to CIS, we will include single
excitations in EOM-pCCD by extending the R operator of eq. (69). In addition to
the identity operator 7y and all pair excitations 'Ip, R also contains a summation
over all single excitations,

Rys = coTo + Z Ci Tai + ch Taaiis (73)

ia

where #,; is a singlet excitation operator 7,; = aaa; + aﬁa that creates a singly
excited electronic state with respect to |®q), [¢) = 7ia|®o). The Ry amplitudes are
determined from solving

[P, Ros]|®o) = wps Rps| Do), (74)

where we still have the similarity transformed Hamiltonian of pCCD, 'H(\?) while
wps are the excitation energies of both singly excited and pair excited states. We
will label this simplified model as EOM-pCCD+S to indicate that single excitations
are included a posteriori in the R, operator. In contrast to CIS that uses a single
Slater determinant as reference, EOM-pCCD+S employs the pCCD wave function as
reference state. Furthermore, electron correlation effects are included through the Tp
operator in the similarity transformed Hamiltonian.

Similar to EOM-pCCD, the excitation energies are obtained by diagonalizing a non-
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Hermitian matrix of the form

0 (@lHPL) (@olHYI%)
EEPIR)  CIAPE  CIHEPIR) |- (75)
0 @@ APE (@A)

Note that the final working equations have been spin-summed and the calcuated
excitation energies are thus spin-free. Furthermore, in contrast to convent ional EOM-
CC methods. the first column does not equal zero because single excitations are not
included in the cluster operator of pCCD. Thus. terms like (?i'?:lf,{f) |®g) do not vanish
as they are not incorporated in the ground-state CC amplitude equations. Although
we can account for single excitations in a rather straightforward way, we loose size-
intensivity in the EOM model. For the molecular systems investigated so far, the
error introduced by extending only the I—?p operator is approximately three orders of
magnitude smaller than the actual excitation energies, while the computational cost
increases insignificantly compared to EOM-pCCD (the Hamiltonian still contains
terms that scale as O(0%v?), but with a larger pre-factor). Thus, EOM-pCCD+S
represents a cost-effective starting point to study singly excited electronic states in
the pCCD model.

c.6.3 Targeting doubly-excitated states in all-trans polyenes

All-trans polyenes are model systems for carotenoids and polyene chromophores that
play an important role in photoprocesses. The proper description of the two lowest-
lying excited states poses a challenge to both experiment and quantum chemistry
approaches, 1927145 especially because doubly excited configuration are required to
accurately model ground and excited states of longer polyenes. These molecules are
thus ideal test systems to assess the performance of our proposed excited state models
based on electron-pair states. In [H2], we have studied all-trans polyenes ranging
from 2 to 7 double bonds, i.e., from C Hg to Cy Hyg.

The excitation energies of the two lowest-lying excited states for DFT-optimized
structures are presented in Table 5. EOM-pCCD+S8 yields excitation energies that are
lower than the corresponding CIS(D) values. Nonetheless, EOM-pCCD S predicts
the wrong order of the first bright and dark state in all-trans polyenes using the DFT-
optimized structures. For the DMRG-optimized structures, the excitation energies of
the first dark states decrease by approximately 0.6 to 0.8 eV compared to the DFT-
optimized structures so that the first (adiabatically excited) dark state lies above the
first (adiabatically excited) bright state by approximately 0.2-0.4 eV.

Our calculations demonstrate that the EOM-pCCD+S excitation energies (and the
character of the excited states) strongly depend on the molecular structures used in
calculations (compare Tables 5 and 6). Specifically, the character of the 2! A state
can only be properly predicted if molecular structures are allowed to relax, resulting in
a dominant doubly-excited HOMO? —LUMO? configuration and two singly-excited
configurations (HOMO—LUMO-+1 and HOMO—-1—LUMO). In order to accurately
model the first dark state in all-trans polyenes, double excitations beyond electron-
pair excitations as well as higher excitations (triples, etc.) might be important to
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Table 5: Vertical excitation energies of the two lowest-lying excited states in all-trans
polyenes C,Hg to C,H,4 calculated for EOM-pCCD, EOM-pCCD+8, and different
quantum chemistry methods. The molecular structures were optimized using DFT.
Note that the 6-31G basis set was used in CIS(D), while the cc-pVDZ basis set was
utilized in MRMP. CASSCF was performed in a double-zeta basis set (see corre-
sponding references). The excitation energies of EOM-pCCD and EOM-pCCD+5S
are determined for the cc-pVDZ basis set, while the corresponding results for the
6-31G basis set are given in parenthesis.

C—C | EOM-pCCD _ EOM.pCCD+S _ CIS(D) "+ MRMP™®  CASSCF'*"
2' A7
2 10.56 (10.49) 7.45(7.37) 9.01 6.31 6.67
3 9.11(9.04) 6.79 (6.75) 7.81 5.10 5.64
4 8.11(8.02) 6.15 (6.09) 6.78 4.26 5.16
5 7.42(7.32) 5.69 (5.63) 6.12 3.68 4.32
6 6.93 (6.82) 5.37 (5.29) 5.55 3.19 -
T 6.58 (6.46) 5.13 (5.05) 5.14 2.80 -
1'BF
2 7.20(7.44) 8.09 6.21 7.73
3 5.98 (6.16) 6.78 5.25 7.06
4 = 5.19(5.34) 5.95 4.57 6.62
5 = 4.62 (4.75) 5.43 4.17 6.37
6 - 4.20(4.31) 5.00 3.87 =
T = 3.87 (3,97} 4.70 3.60

Table 6: Vertical and adiabatic excitation energies of the two lowest-lying excited
states in all-trans polyenes C;oH;, to C4H g calculated with EOM-pCCD, EOM-
pCCD+S, and DMRG for different DMRG-optimized geometries. Note that different
active spaces are used in DMRG calculations (see computational details of [H2]
and ref. 148), while all orbitals are active in EOM-pCCD and EOM-pCCD+S. The
DMRG reference data is taken from ref. 148. Experimental data is taken from ref.
149. pCCD+S indicates EOM-pCCD+S.

C=C | pCCD+S DMRG | pCCD+S _DMRG | pCCD+S DMRG | pCCD+S DMRG | Exp.
v a U ax |
2TA,
5 .28 5.43 5.18 101 6.07 4.51 185 3.36 3.03
6 5.99 4.76 4.61 3.41 5.84 4.15 4.60 2.99 2.69
7 5.76 1.64 4.44 3.22 5.63 3.91 4.45 2.73 2.44
A
5 191 5.35 5.20 1.98 4.79 577 1.63 5.49 3.57
6 4.50 1.98 4.30 4.60 4.41 5.41 4.26 5.13 3.31
7 4.25 4.66 4.04 1.29 4.14 5.16 3.99 4.87 3.12

capture the missing correlation effects in the targeted excited states that cannot
be described within pCCD. Nonetheless, our numerical results suggest that EOM-
pCCD+S represents a good and cost-effective starting point to investigate singly-
excited states in the pCCD model.
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c.7 Modeling heavy-element chemistry with geminals

Heavy elements are immensely difficult to describe theoretically because correlation
effects and relativistic effects have to be described on equal footing, which poses a
challenge for present-day quantum chemistry, especially when the molecular system
under investigation contains more than one heavy element. The treatment of relativis-
tic effects via one-component approaches remains computationally advantageous. 159
As scalar relativistic effects are nowadays relatively straightforward to describe, and
there are sufficiently accurate approaches to treat spin-orbit interactions perturba-
tively, the primary difficulty is the large number of competing highly-correlated elec-
tronic states resulting from distributing electrons among the energetically close-lying
valence atomic orbitals, which requires a multi-reference treatment. Since AP1roG
does not require us to restrict the active space as in conventional multi-configurational
method, it represents computationally an ideal ansatz to model heavy-element chem-
istry. In the following, we will assess the accuracy of our proposed AP1roG-based
methods in describing ground and excited states of small actinide complexes. All
numerical results are presented in [H2,H4].

The uranyl cation (UO2") is a small building block of a large variety of uranium-
containing complexes and clusters. ' This molecule has a linear structure and a
singlet ground-state electronic configuration. Its characteristic symmetric and asym-
metric U-O vibrational frequencies are used to identify the presence of UOZ" in larger
molecular assemnblies. 1°1:152 While the electronic structure of the uranyl cation is well-
understood around the equilibrium structure, 5:10:17:20:24.28,108,153°155 the complicated
nature of the U-O bond hampers a theoretical description at larger U-O distances
using standard quantum chemistry approaches. 108 Ope of the limiting factors that
impede theoretical studies is the large number of strongly-correlated electrons dis-
tributed among the 5f-, 6d-, and 7s-orbitals. In addition, the 6s- and 6p-core-valence
orbitals are easily polarizable and have a non-negligible contribution to the corre-
lation energy. However, around the equilibrium structure, the uranyl cation is well
described by single-reference CC theory if all important electrons are correlated. This
allows us to assess the performance of the above presented AP1roG-based models in
describing both static and dynamic correlation effects originating from the 5f-, 6d-,
and Ts- as well as the core-valence electrons.

The equilibrium bond lengths and vibrational frequencies of the uranyl cation ob-
tained by different quantum chemistry methods are shown in Table 8 (scalar rel-
ativistic effects have been included using relativistic effective core potentials). As
expected, AP1roG considerably underestimates the equilibrium bond length, while
we is in good agreement with CCSD(T). Adding dynamic correlation effects on top of
AP1roG shifts 7. closer to the CCSD(T) reference data. The shape of the potential,
however, strongly depends on the AP1roG dynamic correlation model. Specifically.
PT2b(d) (originally introduced as PTb) results in a much steeper potential energy
surface overestimating vibrational frequencies by more than 330 cm~! compared to
CCSD(T), while LCCD and LCCSD preserve the shape of the potential energy surface
and vield a vibrational frequency that agree well with AP1roG and CCSD(T) data
(differences amount to approximately 20 em™!). The overall accuracy of AP1roG-
LCC lies between CCSD and CCSD(T). being closer to the latter. We should empha-
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size that PT2SDd(d) (equivalent to PTa) completely fails for the UO2" molecule and
produces a discontinuous potential energy surface around the equilibriumn (see also
Figure 8). Furthermore, the CASSCF equilibrium distance strongly depends on the
size of the active space chosen in CASSCF calculations. Specifically, increasing the
active space from CAS(10,10) to CAS(12,12), i.e., including the o- and o*-orbitals,
results in spectroscopic constants that are in good agreement with AP1roG-LCCD
and CCSD(T) data.

525,44
Method re |A] we [em™7]

~B25.46
o5 4 APlroG 1.669(—0.047)  1062(+53)
RPN | N AP1roG-PT2b(d)  1.715(—0.001)  1340(+331)
O AP1roG-LCCD 1.712(—0.004)  997(—12)
g AP1roG-LCCSD  1.724(+0.008)  1027(+18)
w2 CAS(10,10)SCF 1.694(—0.022)  1079(+70)
62556 1 . CAS(12,12)SCF 1.707(—0.009)  1034(+25)
gassel e [elais} 1.690(—0.026)  1125(+116)
a et il CCSD 1.697(—0.019)  1068(+59)

162 164 186 168 170 172 174 176 1TE 180 ~
Sl CCSD(T) 1.716 1009

Figure 8: Potential energy surfaces for ~ Table 7:  Spectroscopic constants for
the symmetric stretching of the UO2"  the symmetric dissociation of the vost
molecule around the equilibrium geom-  molecule for different quantum chem-
etry. Note that the CASSCF potential  istry. The differences are with respect to
energy surfaces are much higher in en-  CCSD(T) reference data. The CASSCF
ergy and are thus not shown. and CC data were taken from Ref. 108.

Figure 8 shows the fitted potential energy surfaces around the equilibrium for se-
lected quantum chemistry methods. AP1roG-LCC yields total electronic energies
that are between CCSD and CCSD(T), while the potential energy surface predicted
by AP1roG-PTb is considerably lower than the CCSD(T) reference curve. Note that
the potential energy surfaces optimized by CASSCF lie much higher in energy and
are thus not shown in Figure 8.

The spectrum of the uranyl cation is well understood 7202151156157 and its lowest-
lying excited states are purely singly-excited states. It thus represents an ideal test
system to assess the accuracy of EOM-pCCD+S. The vertical and adiabatic excita-
tion energies for the four lowest-lying excited states in EOM-pCCD+S and CIS are
summarized in Table 8. Note that for the UO,?" molecule the two lowest-lying ex-
cited states can be accurately described within the EOM-CCSD model, which yields
excitations energies that are similar to completely renormalized EOM-CCSD(T) ref-
erence values.15® For the higher-lying excited states, however, dynamic correlation
effects become important and a triples correction has to be included to accurately
model those states. The EOM-CCSD results in Table 8 can thus be considered as
upper bounds of the excitation energies for the m, — d, state.

In general, EOM-pCCD+S overestimates vertical excitations energies of the two
lowest-lying excited states (o, — ¢, and o, — d,) by approximately 0.5 eV, while
the corresponding adiabatic excitation energies are overestimated by about 0.7 eV.
Note that for the uranyl cation, CIS outperforms EOM-pCCD+S and deviates from
EOM-CCSD reference data by approximately 0.3 (vertical excitations) to 0.6 eV (adi-
abatic excitations). As expected, neither EOM-pCCD+S nor CIS are able to accu-
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Table 8: Vertical and adiabatic excitation energies and equilibrium U-O bond lengths
of the four lowest-lying excited states in the U0,*" molecule calculated for EOM-
pCCD+S and different quantum chemistry methods.

o EOM-pCCD+S CIS EOM-CCSD
Excitation
w [eV]
Ou — Ou 155 433 4.02
vertical | v 4.97 4.79 4.36
Ty — Oy 7.99 7.84 5.28
T — Ou 8.11 8.00 5.36
Oy — Ou 4.42 4.18 3.70
ailiabatic oy — Oy 4.87 4.66 4.08
T e — Oy 7.62 7.47 4.63
Tu — Oy 7.79 7.62 4.72
Excitation e |A]
Ty — Ou 1.712 1.694 1.772
skt Oy — Oy 1.709 1.690 1.768
Ty — Oy 1.746 1.719 1.805
Ty — Oy 1.745 1.720 1.805

rately predict the excitation energies for the m, — 0, states as these excited states
are dominated by dynamic correlation effects which are not included in CIS and
only marginally accounted for in pCCD. We should emphasize that EOM-pCCD+S
provides equilibrium U-O bond lengths of excited states that deviate less from the
EOM-CCSD reference values (Ar, =~ 0.06 A compared to Ar, = 0.08 A in CIS).

To conclude, the EOM-pCCD+S model predicts the correct order of the lowest-lying
excited states in the uranyl cation and provides excitation energies of decent accuracy
with errors of about 0.5 eV with respect to EOM-CCSD reference values. However,
errors in excitation energies are slightly worse than in the simple CIS model.

c.8 Summary and impact of research

The accurate and inexpensive description of electron correlation effects represents a
challenging problem in quantum chemistry. Due to their unfavorable computational
scaling with system size, conventional multi-reference methods are usually limitted to
small molecular systems or small basis sets and require the definition of active orbital
spaces. In the presented series of publications, we scrutinized alternative electronic
structure models that allow us to describe both static/nondynamic and dynamic
electron correlation effects without introducing active orbital spaces. Our methods
are based on wave functions restricted to electron-pair states (geminals) to capture
static/nondynamic electron correlation. The missing dynamic electron correlation is
added a posteriori by so-called broken-pair states. Specifically, we focused on the
AP11roG (or pCCD) wave function ansatz presented in ref. 52. Our numerical results
demonstrate that the AP1roG model and its extensions allow us to reliably describe
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strongly and weakly correlated systems, where the accuracy of ground- and excited
state properties is similar to or better than results predicted by conventional quantum
chemistry methods.

c.8.1 Recovering size-consistency

Although being size-extensive by construction, the APlroG wave function is not
size-consistent and hence does not provide reliable potential energy surfaces. Size-
consistency can be recovered by optimizing the one-particle basis functions used to
construct the geminals. We have presented the first variational orbital optimization
protocol using a Lagrange formulation as well as different approximate non-variational
orbital optimization techniques that are based on projecting out the seniority-two
sector. All orbital-optimization procedure result in size-consistent potential energy
surfaces. Nonetheless, numerical results indicate that the variational orbital opti-
mization algorithm is the most robust and stable one and smoothly converges even
for difficult molecular systems. Each orbital optimization step, however, requires
a four-index transformation and thus deteriorates the scaling of the AP1roG wave
function from O(0?v?) to O(N®).

c.8.2 Approximating static and nondynamic correlation with electron-
pair states

The accuracy of (voo-)AP1roG in describing static and nondynamic correlation has
been analyzed using concepts of quantum information theory. Specifically, we used
the single-orbital entropy and orbital-pair mutual information to dissect correlation
effects into different contributions. Our numerical study focuses on one-dimensional
systems where quantum fluctuations have a more pronounced role. Although AP1roG
captures the strongest orbital-pair correlations in the weak correlation limit as well
as for intermediate interaction strengths, it overestimates orbital-pair correlations in
the strong correlation limit. This overcorrelation is introduced by the (variational)
orbital optimization procedure. It remains, however, ambiguous if AP1roG represents
a good zero-order wave function for a posteriori corrections in the strong correlation
regime.

c.8.3 Capturing dynamic correlation

To reach chemical accuracy in predicting, for instance, spectroscopic constants and re-
action energies, we have to include dynamic electron correlation effects in the AP1roG
wave function. Our proposed dynamic energy corrections include dynamic electron
correlation a posteriori on top of the AP1roG wave function. Specifically, we have
developed different flavours of Perturbation Theory models of second order and a
Linearized Coupled Cluster correction. In general, our PT2 approaches allow us to
accurately predict equilibrium properties, like equilibrium distances or vibrational
frequencies. However, all studied PT2 models fail in modeling potential energy sur-
faces and usually diverge in the dissociation limit. Our LCCD and LCCSD correc-
tions are more robust and result in improved total and relative (reaction) energies as
well as energy profiles. Although AP1roG-LCCSD yields equilibrium distances and
vibrational frequencies that deviate more from reference values than most PT2 cor-
rections, it considerably improves results obtained by conventional Coupled Cluster
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models (CCSD, BCC, LCCSD). Thus, AP1roG-LCCSD (combined with a variational
orbital optimization protocol of AP1roG) allows us to approach chemical accuracy in
many molecular systems dominated by both static and dynamic electron correlation.

c.8.4 Targeting excited states

Since AP1roG can be re-written as a Coupled Cluster wave function ansatz, we can
exploit the Equation-of-Motion formalism to target excited states. In this series of
publication, we have presented two excited state models with an AP1roG reference
function. Our first EOM model allows us to target doubly-excited states only as
the AP1roG reference functions is limited to electron-pair excitations. In the second
model, we have also included single-excitations in the EOM ansatz, restricting the
Coupled Cluster reference function to electron-pair excitations. Although being a
simple and inexpensive excited state model (O(6*v?)), the EOM-pCCD+8 (or EOM-
AP1roG+S) approach breaks size-intensivity. Numerical studies, however, indicate
that the introduced errors are orders of magnitude smaller than the excitation energies
and that EOM-pCCD+S represents a good starting point to predict singly-excited
states.

c.8.5 Modeling heavy-element chemistry

Finally, we have applied our proposed wave function models to describe the ground-
and excited states of heavy-element containing compounds. Specifically, we focused
on the uranyl cation that is a small building block of a large variety of uranium-
containing complexes and clusters. This particular test systems allows us to assess
our AP1roG-based models in modeling the correlation effects originating from the 5f-,
6d-. and Ts- as well as the core-valence electrons. Most importantly, AP1roG-LCCSD
provides accurate ground-state potential energy surfaces, while EOM-pCCD-+S yields
excited states properties that are in good agreement with conventional electronic
structure methods like CIS and EOM-CCSD. Thus, we believe that our proposed
models are promising alternatives to describe heavy-element-containing complexes
and clusters.

c.8.6 Implementation

All working equations have been implemented partly in the HORTON2.0 program
suit, an open-source quantum chemistry software package written in Python and C++,
and in the PIERNIK program package, an open-source quantum chemistry software
package based on the HORTON2.0 program suit. Specifically, we have implemented
the following modules in PIERNIK as well as HORTON2.0

the geminal module (restricted AP1roG with and without orbital optimization)

the dynamic correlation module (Mgller-Plesset Perturbation Theory of second
order, PTa and PTb corrections on top of AP1roG)

the orbital entanglement module (single-orbital entropy and mutual information
for seniority-zero wave functions)

the orbital localization module (Pipek-Mezey localization)
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e extensions to the linear algebra module (two- and four-index transformation,
general tensor contractions and other tensor manipulations)

PIERNIK is being maintained by an interdisciplinary software development team at
NCU in Torun. Our contributions to PIERNIK include

e the extension of the dynamic correlation module (Linearized Coupled Cluster
correction based on a Hartree-Fock and AP1roG reference function as well as
PT2SD- and PT2MD-type methods)

e the Equation-of-Motion module, which includes EOM-pCCD and EOM-

e the Davidson diagonlization module
e the perturbation-based quasi-Newton solver module (including DIIS)

Currently, the PIERNIK developer team is working on the first release (PIERNIK1.0).
As soon as completed, PIERNIK1.0 will be available to the general public.

c.8.7 Outlook

Our numerical studies presented in this series of publications highlight the good
performance of AP1roG and its dynamic energy corrections in predicting electronic
energies and energy-derived quantities, like spectroscopic constants. Nevertheless,
we have also pointed out that variational orbital optimization within AP1roG over-
estimates orbital-pair correlations. It remains ambiguous whether an LCCSD cor-
rection with an orbital-optimized AP1roG reference function provides accurate elec-
tronic wave functions and whether it can cure the overcorrelation introduced by voo-
AP1roG. The orbital-pair correlations within AP1roG-LCCSD can be determined
from the response one-, two-, three-, and four-particle reduced density matrices as
outlined in [H5]. Most importantly, an orbital-pair correlation analysis will allow us
to decide whether an LCCSD correction yields accurate and reliable electronic wave
functions. Furthermore, our simple excited state models do not include dynamic elec-
tron correlation effects and hence might yield inaccurate spectra for systems where
dynamic correlation is important. A dynamic energy correction that can be ex-
tended to target excited states using the EOM formalism is LCCSD, which results
in the AP1roG-LCCSD model. The performance of EOM-pCCD-LCCSD (or EOM-
AP1roG-LCCSD) is currently under investigation and will be the subject of future
work.

5 Discussion of other scientific achievements, after
PhD studies

In additional to the development of electronic structure approaches based on electron-
pair states, our research covers the theoretical modeling of heavy-element-containing
compounds and their properties using conventional and unconventional electron cor-
relation methods as well as application of concepts of quantum information theory to
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obtain a qualitative understanding of electronic structures. In the following, we will
briefly highlight the most important findings.

5.1 Modeling of heavy-element chemistry using conventional
and unconventional electronic structure methods

Our work focuses on CASSCF /CASPT2 and DMRG calculations in transition metal
and actinide chemistry. We further use these multi-reference methods to benchmark
DFT results.

5.1.1 Assessment of DFT magnetization densities and magnetic proper-
ties

We presented a systematic theoretical study of electronic structures, magnetization
densities, and magnetic properties of iridium PNP pincer-type complexes contain-
ing various non-innocent ligands, like nitrido, azide, and nitrosyl ligands [P3]. The
quality and accuracy of various Density Functional Approximations in predicting
magnetization densities is assessed by comparing them to CASSCF reference distri-
butions. Our analysis points to qualitative differences in DFT magnetization deunsities
at the iridium metal center and the pincer ligand backbone compared to CASSCF
reference data when the non-innocent ligands are changed from nitrido, to azide, to
nitrosyl. These observations are reflected in large differences in hyperfine couplings
calculated for the iridium metal center. In summary, we find that none of the tested
exchange-correlation functionals is able to provide a satisfactory description of the
magnetization densities and magnetic properties in the investigated iridinm com-
plexes. Similar problems have been already observed for iron complexes containing
non-innocent ligands. In contrast to previous findings, however, conventional electron
correlation methods, like CASSCF, are sufficient to accurately describe the electronic
structure of the considered iridium compounds. This study emphasizes the impor-
tance of analyzing density functionals to understand their failures and weaknesses
and to improve current approximations to the exchange-correlation functional to be
applicable to challenging problems in transition-metal chemistry.

5.1.2 Cation-cation-interactions in actinyl dications

We investigated cation-cation interactions (CCIs) between different actinyl ions, such
as uranyl [P2] and neptunyl dications (under revision in Inorg. Chem.). In [P2], we
present a state-of-the-art DFT computational study of the uranyl(VI) and uranyl(V)
CCIs in aqueous solution. Most importantly, we provide reliable electronic struc-
tures of two interacting uranyl(VI) and uranyl(V) subunits as well as those of the
uranyl(VI) and uranyl(V) clusters for the first time. Our theoretical study eluci-
dates the impact of CCIs on changes in the molecular structure as well as changes
in vibrational and UV-Vis spectra of the bare uranyl(VI) and uranyl(V) moieties for
different total spin-states and total charges of the dications. Specifically, the forma-
tion of both diamond- and T-shaped CCIs introduces structural asymmetries to at
least one uranyl subunit resulting in one longer interior U-O and one shorter ter-
minal U-O bond. These structural changes affect the vibrational spectra of all CCI
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clusters and prevent any discrimination between and identification of the uranyl(VI)
and uranyl(V) species in the supramolecular compounds. In contrast to vibrational
spectra, the analysis of the electronic spectra of CCI clusters is more useful and pro-
vides direct information about the oxidation state of the uranium atom. Specifically,
the [(UO,),|** compounds have similar spectral characteristics as the bare [UO,**
molecule. while the electronic transitions calculated for [(UO,),|*" and [(UO,),|2*
agree well with the characteristic f-f transitions observed in the [UO,|" unit. Our
study suggests that the differentiation between the uranyl(VI) and uranyl(V) subunits
in CCI clusters based on a pure vibrational frequency analysis remains ambiguous,
primarily because of the overlay or shift of the spectral characteristics of both uranyl
cations. A frequency analysis can, however, be used to confirm if the CCI cluster
underwent major structural changes compared to the bare uranyl subunits. Finally.
electronic spectroscopy allows us to identify the oxidation state of the uranium atom
in CCI clusters and thus to reliably dissect the CCI supra-molecule in its uranyl
building blocks.

In a follow-up publication, we investigate the T-shaped and diamond-shaped nep-
tunyl(V) and neptunyl(VI) dimers (under revision in Inory. Chem.). In this work,
we scrutinize their molecular structures, solvation effects, the interplay of static and
dynamic correlation, and the influence of spin orbit coupling on the ground-state
and lowest-lying excited states for different total spin-states and total charges of the
neptunyl dications. Most importantly, our study highlights the complex interplay
of correlation effects and relativistic corrections in the description of the ground and
lowest-lying excited states of neptunyl dications. The ground-state of the investigated
clusters is strongly affected by both electron correlation effects and spin-orbit cou-
pling. Specifically, accounting for dynamic correlation using a CASPT?2 corrections
changes the ground-state from a quintet to a triplet state. Inclusion of spin-orbit cou-
pling entails mixing between triplet and quintet states for the T-shaped CCI, while
the diamond-shaped CCI contains only quintet states.

5.1.3 The mysterious interaction between CUO and a noble gas matrix.
A DMRG perspective

In collaboration with the group of Prof. Legeza, we have performed electronic struc-
ture calculations on actinide molecules using the DMRG algorithm. In [P10], we
present the first DMRG study on actinide chemistry, where we scrutinize the antici-
pated singlet-triplet spin crossover of the CUO molecule diluted in a noble gas matrix
(within a scalar relativistic treatment) and elucidated the mysterious interaction of
the CUO unit with the noble gas environment. Specifically, the interaction of the
CUO molecule with the surrounding noble gas matrix was investigated in terms of
complexation energies and dissected using orbital correlation patterns. The com-
plexation of the CUO molecule by noble gases lowers the first excited 3@ state with
respect to the !S* state compared to the bare CUO complex, whose ground state
is a 19" state. In general, the largest coordination energy is found for the 3¢ state
for both the neon and argon noble gas matrix. With addition of spin-orbit coupling,
the energy difference between the CUO moiety embedded in neon and argon atoms
is brought down to 0.02 eV, and therefore the anticipated ground-state spin crossover
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might occur. Furthermore, the strongest uranium-noble gas interaction is found for
the CUOAr, complex in its triplet state. Most importantly, [P10] was the first the-
oretical study confirming the experimentally anticipated singlet-triplet ground state
change of the CUO molecule.

5.1.4 Singlet ground-state actinide chemistry with geminals

Our numerical results presented in [P8] demonstrate that voo-AP1roG provides an
accurate, cheap, and robust alternative to standard multi-reference quantum chem-
istry methods in studying single- and multiple-bond breaking processes in closed-shell
systems. These findings motivated us to investigate the performance of (voo-)AP1roG
in modeling ground-state actinide chemistry. [P7] is the first application of the voo-
AP1roG method to singlet-state actinide chemistry. In this work, we assess the
accuracy and reliability of the AP1roG ansatz in modelling the ground-state elec-
tronic structure of small actinide compounds by comparing it to standard quantum
chemistry approaches. Our study of the ground state spectroscopic constants (bond
lengths and vibrational frequencies) and potential energy curves of actinide oxides
(UO%" and ThO,) as well as the energetic stability of ThC; isomers reveals that voo-
AP1roG accurately describes the electronic structure of heavy-element compounds.
Specifically, AP1roG provides qualitatively correct potential energy surfaces for the
dissociation of UO%+ and ThO,, while conventional methods fail, and predicts spec-
troscopic constants that are in good agreement with CCSD(T), the gold standard of
quantum chemistry. Our study further highlights the failure of conventional multi-
reference methods like CASSCF and suggests that 12-orbital active spaces are unbal-
anced active spaces when the U-O bonds are stretched. To sum up, our first work on
small actinide complexes illustrates the good performance of AP1roG for describing
the electronic structure of (closed-shell) actinide compounds and motivates computa-
tional studies on larger, more realistic actinide-containing materials. The advantage
of AP1roG over conventional multi-reference methods is its cheap computational cost
that allows AP1roG to be easily applied to larger molecular systems.

5.2 Qualitative interpretation of electronic wave functions us-
ing concepts of quantum information theory

The interaction of orbitals is a useful concept in chemistry. It is frequently used to
understand chemical processes and reaction mechanisms. Unfortunately, the interac-
tion of orbitals is commonly understood using qualitative arguments, like molecular-
orbital diagrams, Frontier-orbital theory, and ligand field theory. We are developing
quantitative means to measure the interaction of orbitals using concepts of quan-
tum information theory. Specifically, we have shown that orbital entanglement and
correlation are particularly useful and intuitive measures to quantify the interaction
of orbitals and to elucidate electronic structures and changes in electronic structure
that accompany chemical processes. For instance, orbital entanglement and correla-
tion can be used to predict bond orders, identify transition states, and dissect electron
correlation effects.
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5.2.1 Extracting bond order from entropy measures

The chemical bond is an important local concept to understand chemical compounds
and processes. Unfortunately, like most local concepts, the chemical bond and the
bond order do not correspond to any physical observable and thus cannot be deter-
mined as an expectation value of a quantum chemical operator. In [P11], we elabo-
rate on how concepts of quantum information theory can be applied to study chemical
processes and to redefine bond orders. We demonstrate that the one- and two-orbital
entropy measures can be utilized to monitor bond-breaking and—equivalently—bond-
forming processes. Upon dissociation of a chemical bond, the bonding and antibond-
ing molecular orbitals associated with the bond of interest become strongly entangled.
Hence, the corresponding single-orbital entropies gradually increase if two atoms are
pulled apart. Moreover, the entanglement analysis resolves the bond breaking of
different bond types (o, =, etc.) individually in multi-bonded centers. An entropy-
based bond order can thus be deduced from the single-orbital entropy diagram. As
molecules with prototypical bonds, we have investigated the dissociation process of
the diatomic molecules N5 (triple bond), F2, and CsH (both single bond), which
represent characteristic examples of single- or multi-reference problems.

In a follow-up publication [P9], we demonstrate that the orbital entanglement and
correlation analysis can be extended to polyatomic molecules to understand chemical
bonding. Specifically, we apply our entropy-based bond order analysis to carbon
carbon, silicon-silicon, and carbon-phosphorus centers. Our approach correctly re-
produces bond multiplicities in simple polyatomic molecules like ethane, ethene, and
acetylene and confirms the triple bonding between the carbon-phosphorus centers in
the [CP|” and HCP molecules. The behavior of phosphorus in these prototypical phos-
phoalkynes closely resembles the bonding situation in the N, and C,H, molecules.
Furthermore, our analysis confirms that the nature of the chemical bond in the C,
molecule is far more complicated than for their higher substituted analogs like CoHg,
C,H,, and C,H,. Stretching the C-C bond in C, does not yield a gradually increas-
ing entanglement and correlation pattern, which is an indication of the complexity of
chemical bonding in the carbon dimer.

5.2.2 Monitoring bond-formation processes along the reaction coordinate

We extended our entropy-based bond-order analysis presented in [P9,P11] to dis-
sect bond-formation processes in metal-driven catalysis along the reaction coordinate.
Similar to the procedure outlined above, we exploit the entanglement and correlation
among molecular orbitals to analyze changes in electronic structure that accompany
chemical processes. Specifically, we demonstrate how the orbital-pair mutual infor-
mation can be used to monitor bond-formation processes [P6] and to identify points
along the reaction coordinate when chemical bonds are formed and broken. As a proof
of principle example, we investigated the nickel-ethene complexation reaction, where
the metal-olefin bond is made possible through metal-to-ligand back-donation. This
example allows us to monitor the interplay of back-bonding and 7-donation along the
reaction coordinate. Our orbital entanglement and correlation analysis shows that
metal-ligand bonding is initialized by back-donation which establishes around the
transition state. This back-bonding then entails 7-donation from the ethene ligand
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to the metal center. To conclude, our study supports the crucial role of metal-to-
ligand back-donation in the bond-forming process of nickel-ethene.

In a follow-up work [P4], we studied the bonding mechanism of ethene to a nickel or
palladium center using different quantum chemistry methods (DFT, CASSCF, and
DMRG). Specifically, we focus on the interaction between the metal atom and bis-
ethene ligands in perpendicular and parallel orientations. The bonding situation in
these structural isomers is further scrutinized using an energy decomposition analysis
and our orbital entanglement and correlation analysis. In particular, the orbital-
pair mutual information and single-orbital entropy highlight the fact that when two
ethene ligands are oriented perpendicular to each other, the complex is stabilized by
the metal-to-ligand double-back-bonding mechanism. Finally, we demonstrate that
nickel-ethene compounds feature a stronger and more covalent interaction between
the ligands and the metal center than palladium-ethene complexes with similar co-
ordination spheres.

5.2.3 Automatic selection of active orbital spaces: correlation and unre-
stricted natural orbital criteria

Conventional multi-reference methods can treat active spaces that are often at the
upper limit of what is required for a proper treatment of species with complex elec-
tronic structures due to the large number of degenerate or quasi-degenerate electronic
states, leaving no room for verifying their suitability. In [P1], we address the issue of
properly defining active orbital spaces and introduce a protocol to determine optimal
active spaces based on the use of the DMRG algorithm and the orbital-pair mutual
information. Specifically, we suggest to construct the active orbital space based on
the distribution of the orbital-pair mutual information. Our selection criteria provide
optimal active spaces that allow for an accurate description of static/non-dynamic
electron correlation. In our approach, the active space should include all orbital pairs
that are strongly correlated. Starting from an (unconverged) reference calculation
containing a large active space, an optimal active space can then be defined by only
selecting the strongly correlated orbitals from this large active space so that the op-
timal active space calculation reproduces the orbital-pair correlation diagram of the
reference calculation. This recipe has been used to define active orbitals spaces in
larger actinide-containing compounds, like PuO,(OH), and actinyl dications. where
multi-configurational reference calculations were not available in the literature. Most
importantly, this selection procedure facilitates black-box active space calculations.
where no a priori knowledge of the electronic structure of the molecule under study
is required. Note that the DMRG reference calculation does not have to be fully
converged as already 4-6 sweeps of the DMRG algorithm yield sufficiently accurate
correlation diagrams that can be used in the automatic selection of active orbital
spaces.

Finally, together with the group of Prof. Pulay, we have assessed the performance
of the unrestricted natural orbital (UNO) criterion to construct active orbital spaces
in a black-box fashion [P5]. The UNO criterion has been rigorously tested against
DMRG reference calculations, where active orbital occupancies in UNO-CAS and
CASSCF calculations are benchmarked against DMRG reference values in a number
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of strongly correlated molecules (Fy, ozone, NO,, polyenes, naphthalene, azulene,
anthracene, nitrobenzene, phenoxy, benzyl, o-, m-, and p-benzyne, nickel-acetylene,
and Cr,). Our results suggest that the UNO criterion works well in all these cases.

5.3 Further development of electronic structure codes

Besides the above presented wave function models, we have developed and imple-
mented additional AP1roG-based approaches into the PIERNIK program suite. Specif-
ically, we extended existing modules to include

e a CCS correction on top of AP1roG/pCCD (pCCD-CCS)

e the EOM-CCS/CIS, EOM-pCCD-CCS, EOM-LCCSD, and EOM-pCCD-
LCCSD models

e the linear-response module based on EOM-pCCD, EOM-pCCD +S, and EOM-
pCCD-CCS

e different l-electron integrals (electric dipole moment integrals)

5.4 List of publications not included in section 4, after PhD
studies

[P1] K. Boguslawski. F. Real, P. Tecmer, C. Duperrouzel, A. S. P. Gomes, O. Leg-
eza, P. W. Ayers, V. Vallet, On the multi-reference nature of plutonium oxides:
PuOgJ', PuOs, PuOs and PuOy(OH)s, Phys. Chem. Chem. Phys. 19 2017,
4317-4329 (corresponding author).

[P2] P. Tecmer, S. W. Hong, K. Boguslawski, Dissecting the cation-cation interac-
tion between two uranyl units, Phys. Chem. Chem. Phys. 18 2016, 18305-18311.

[P3] D. Stuart, P. Tecmer, P. W. Ayers, K. Boguslawski, The Effect of Nitrido.
Azide, and Nitrosyl Ligands on Magnetization Densities and Magnetic Proper-
ties of Iridium PNP Pincer-Type Complezes, RSC Adv. 5 2015, 84311-84320
(corresponding author).

[P4] Y. Zhao, K. Boguslawski, P. Tecmer, C. Duperrouzel, G. Barcza, O. Leg-
eza. P. W. Ayers, Dissecting the bond formation process of d'°-metal-ethene
complexes with multireference approaches, Theor. Chem. Ace. 134 2015, 120
(corresponding author).

[P5] S. Keller, K. Boguslawski, T. Janowski, M. Reiher, P. Pulay, Selection of
active spaces for multiconfigurational wavefunctions, J. Chem. Phys. 142 2015,
244104.

[P6] C. Duperrouzel, P. Tecmer, K. Boguslawski, G. Barcza, O. Legeza. P. W. Ay-
ers, A quantum informational approach for dissecting chemical reactions,
Chem. Phys. Lett. 621 2015, 160-164 (corresponding author).
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[P7] P. Tecmer, K. Boguslawski, P. W. Ayers, “Singlet ground-state actinide chem-
istry with geminals”, Phys. Chem. Chem. Phys. 17 2015, 14427-14436.

[P8] P. Tecmer, K. Boguslawski, P. A. Johnson, P. A. Limacher, M. Chan,
T. Verstraelen, P. W. Ayers, “Assessing the accuracy of new geminal-based ap-
proaches”, J. Phys. Chem. A 118 2014, 9058-9068.

[P9] M. Mottet, P. Tecmer, K. Boguslawski, O. Legeza, M. Reiher, Quantum
entanglement in carbon-carbon, carbon-phosphorus and silicon-silicon bonds,
Phys. Chem. Chem. Phys. 16 2014, 8872-8880 (corresponding author).

[P10] P. Tecmer, K. Boguslawski, O. Legeza, M. Reiher, Unraveling the quantum-
entanglement effect of noble gas coordination on the spin ground state of CUO,
Phys. Chem. Chem. Phys. 16 2014, 719-727 (corresponding author).

[P11] K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza, M. Reiher, Orbital en-
tanglement in bond-formation processes, J. Chem. Theory Comput. 9 2013,
2959-2973.

5.5 Biometric data
(As of March 19, 2018)

h-index: 14
number of citations: 516
(without self-citations) (390)
number of published papers: 28
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