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SEPARABILITY

Theory of many-body systems, in particular quantum chemistry,

molecular physics, atomic physics, is based on approximations

which impose separability to non-separable multi-dimensional

Schrödinger equations.

Examples:

Hartree-Fock model, Born-Oppenheimer approximation.

In the resulting models, some features of non-separable effects

related to interactions are obscured by the enforced separability.

Examples:

Electron correlation, non-adiabatic effects.

Exactly separable models of interacting particles are of particular

interest in this context.
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BORN-OPPENHEIMER MODEL

• The nuclei are not QM particles but classical sources of the

external potential.

• Their fixed network is in rest in the laboratory reference frame.

• The shape of a molecule is determined by an arbitrarily

prearranged distribution of the nuclei. This distribution may

coincide with the the maxima in the nuclear charge/mass

density derived from experimental data.

• By probing energy values for different nuclear distributions one

can find minima in the potential energy hypersurface

• It is irrelevant whether the nuclei are defined as point charges

or their spatial shapes are taken into account.
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NON-BORN-OPPENHEIMER MOLECULE

• Fundamental chemical notions (e.g. potential energy surface

or a molecular bond length) are inherent to the BO model.

• A non-BO Hamiltonian of a free molecule is spherically

symmetric.

• Tracing the mass-dependence of the density distributions helps

to understand how the molecular shape emerges from

spherically-symmetric non-BO objects.

• The transition between a shapeless structure of two electrons

and two positrons and a hydrogen molecule with a specific

bond length implies a change of the way the molecule is

described - separate treatment of electronic, vibrational and

rotational degrees of freedom is specific for the BO model.
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THE REFERENCE FRAME

• The form of the function which describes the mass distribution

i.e. the shape of the molecule, depends on the choice of the

reference frame.

• This problem is also known in the celectial mechanics – the

difference between the Ptolomean and the Copernican

representations of the Solar System stems from the choice of

different reference points.

• In the BO model the network of fixed nuclei defines the

reference frame.

• In non-BO description the shape of an N-body system is

described by 3N −6 ’shape coordinates’ defined in the so

called ’body frame’.
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CONSTANTS OF THE MOTION

• For an isolated system of N bodies, the total momentum and

total angular momentum are integrals of the motion.

• Consequently, the coordinates of the mass center and three

global rotations can be separated,

• The total wave function is expressed as a linear combination of

products of explicitly defined, universal functions of six

collective variables and of unknown, system-specific, functions

of 3N −6 internal variables – “shape coordinates".
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SHAPE COORDINATES

N=2,  3N−5=1

N=3,  3N−6=3

N=5,  3N−6=9

N=4,  3N−6=6

The number of independent

coordinates of the particles is

equal to the number of degrees

of freedom, i.e. to (3N −6).

These coordinates specify the

"shape".

The total number of interparticle

distances, N(N −1)/2, is larger

than (3N −6) if N > 4.

Only (3N −6) of them are

independent.
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THE REFERENCE FRAME – TWO PARTICLES

LF - laboratory frame;

RP - reference point;

CM - center of mass

Not all legitimate reference

frames (RF) approach the

Born-Oppenheimer one when

the mass of one of the

particles approaches infinity –

for example, the one centered

in the middle of the distance

between the particles.

Commonly used is the

center-of-mass RF.

J. Karwowski, "Some remarks on the mass density distribution",

Croat. Chem. Acta 86 (2013) 531-539 (Douglas Klein Issue)
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MOTION OF TWO PARTICLES
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Left panel – center of mass RF.

Right panel – the RF origin is in the middle of the distance between

the particles.
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CONSTRUCTION OF THE BODY-FRAME HAMILTONIAN

R. T. Pack and J. O. Hirschfelder,

"Separation of rotational

coordinates from the N-electron

diatomic Schrödinger equation"

J. Chem. Phys. 49 (1968) 4009.

A.V. Meremianin, J.S. Briggs,

"The irreducible tensor approach

in the separation of collective

angles in the quantum N -body

problem", Physics Reports 384

(2003) 121 – 195
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TWO PARTICLES

Left: In the CM space-fixed reference frame represented using the

"Relative Hamiltonian".

Right: In the CM body-fixed reference frame represented using

the "Internal Hamiltonian".
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MASS DENSITY

Three-particle systems: H− ion and H+
2

molecule.

Transition of the ground-state mass density, from H− to H+
2

.

The space-fixed reference frame - the "Relative Hamiltonian".

Edit Mátyus, "Pre-Born-Oppenheimer molecular structure theory",

Mol. Phys. 117 (2019) 590-609.
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MOLECULAR BO AND PRE-BO SPECTRA

Molecular energy levels:

BO – left; pre-BO – right.

Center-of-mass (CM) reference frame.

In both electronic states

the rovibratiotional BO

states are bound.

In the pre-BO model all

states linked to the

excited electronic state

are resonances.

In the laboratry reference

frame with no separation

of the free motion of CM,

all discrete states are

degenerate with the CM

continuum states.
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THREE-PARTICLE SYSTEMS

Density of mass operator:

ρ̂(r;r1,r2,r3) = m1 δ (r− r1)+m2 δ (r− r2)+m3 δ (r− r3) .

Density of mass:

ρ(r) = 〈Ψ(r1,r2,r3)|ρ̂(r;r1,r2,r3)|Ψ(r1,r2,r3)〉

Density of mass of particle {3}:

ρ(r)m3
= m3〈Ψ(r1,r2,r3)|δ (r− r3)|Ψ(r1,r2,r3)〉1,2

= m3〈Ξ(r3)|δ (r− r3)|Ξ(r3)〉= m3 |Ξ(r)|
2
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A SEPARABLE MODEL OF NNN INTERACTING PARTICLES

A system of K disjoint pairs of particles interatcing by two-body

potentials and coupled by Hooke forces is separable.

Example: N = 3, − Hookean H+
2

, Ps− , He , etc

12r

23r13r

m 1 m
2

m 3

V12 = V(r12), V13 ∼ r2
13, V23 ∼ r2

23.
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MOLECULAR SHAPES
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Distribution of normalized to 1 density of mass of particles {1} and

{2} as a function of m = m1 = m2. m3 = 1, V = 1/r12

J. Karwowski, "Three-particle non-Born-Oppenheimer systems", 503-518,

in: R. Carbó-Dorca, T. Chakraborty (ed), "Theoretical and Quantum

Chemistry at the Dawn of the 21st Century", Apple Academic Press, 2018.
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m1 = m2 = 1, V(r12) = 1/r12
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STRUCTURE OF H+
2

H+
2H+
2

Length unit (Bohr radius):

a0 =
h̄2

me2

Energy unit (hartree):

Eh =
me4

h̄2

If electron is replaced by muon, me ⇒ mµ = 207me, the length

decreases and the energy increases 207 times.

The muonic analog of H+
2

is ∼ 207 times smaller and its binding

energy ∼ 207 times larger compared to H+
2

.

The “effective nuclear mass" is 207 times smaller than in the

electronic case – the nuclear density is more diffuse.
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MUON CATALYSED FUSION

There were some hopes that this phenomenon may open a way to

self-supporting muon catalyzed fusion with DT µ molecules – the

probability of fusion strongly depends on the overlap of the nuclear

densities.

The basic chain of reactions:

(DT µ)+ → 4He2++µ−+n+18MeV,

µ−+(D2,DT,T2)→ (T µ)+ · · · ,

(T µ)+(D2,DT,T2)→ (DT µ)+ · · · ,

The fusion has been observed, but the number of muons produced

is too small for the reaction being self-supported.

W. H. Breunlich et al., "Muon-catalyzed fusion", Ann. Rev. Nucl.

Part. Sci. 39 (1989) 311.
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PHENOMENA RELATED TO NON-B.O. DESCRIPTION

1. Stability conditions

2. Efimov effect and Borromean system

3. Molecular shapes
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STABILITY OF THREE-PARTICLE SYSTEMS

q2 = q3 =−q1 =±1 bound by Coulomb forces

Ps− = e+ e− e− − stable

H+
2
= e− p p − stable

H− = pe− e− − stable

p µ− e− − unstable

Let

αi =
1/mi

1/m1 +1/m2 +1/m3

, α1 +α2 +α3 = 1.

Rule: A system is stable if α2 ∼ α3.

Every symmetric system (m2 = m3) is stable
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STABILITY TRIANGLE
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S. Kais, Q. Shi, "Quantum criticality and stability of three-body

Coulomb systems", Phys. Rev. A 62 (2000) 060502.
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FINAL REMARKS

Bound systems of particles, when described without

imposing Born-Oppenheimer approximation, exhibit many

interesting and unexpected features. Working with

relatively strongly bound systems composed of electrons

and thousands times more massive nuclei, for which the

Born-Oppenheimer model is highly accurate, we

frequently forget about the non-intuitive and full of

surprizing phenomena the non-Born-Oppenheimer world.
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