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Introduction

The radioactive decay law formulated by Rutherford and Sody in the
nineteenth century [1, 2, 3] allows to determine the number N(t) of
atoms of the radioactive element at the instant t knowing the initial
number N0 = N(0) of them at initial instant of time t0 = 0 and has the
exponential form:

N(t) = N0 exp [−λt],

where λ > 0 is a constant. Since then, the belief that the decay law has
the exponential form has become common.

This conviction was upheld by Wesisskopf–Wigner theory of spontaneous
emission [4]: They found that to a good approximation the quantum
mechanical non–decay probability of the exited levels is a decreasing
function of time having exponential form.
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Introduction

Further studies of the quantum decay process showed that basic
principles of the quantum theory does not allow it to be described by an
exponential decay law at very late times [5, 6] and at initial stage of the
decay process (see [6] and references therein). Theoretical analysis shows
that at late times the survival probability (i. e. the decay law) should
tends to zero as t → ∞ much more slowly than any exponential function
of time and that as function of time it has the inverse power–like form at
this regime of time [5, 6]. All these results caused that there are rather
widespread belief that a universal feature of the quantum decay process is
the presence of three time regimes of the decay process: the early time
(initial), exponential (or "canonical"), and late time having inverse–power
law form [7]. This belief is reinforced by a numerous presentations in the
literature of decay curves obtained for quantum models of unstable
systems. In this context, each experimental evidence of oscillating decay
curve at times of the order of life times is considered as an anomaly
caused by a new quantum effects or new interactions: The so–called
GSI–anomaly [8, 9] is an example.
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Introduction

The question arises, if indeed in the case of one component quantum
unstable systems such oscillations of the decay process at the
"exponential" regime are an anomaly, or perhaps universal feature of
quantum decay processes.

The mentioned GSI anomaly is the cause of that the another question
arises: Whether and how such a possible oscillations depend on the
motion of the unstable quantum system. To find an answer to this
question we need to know how to describe the decay process of unstable
quantum systems in motion.

From the standard, text book considerations one finds that if the decay
law of the unstable particle in rest has the exponential form

P0(t) = e− Γ0 t
~ ,

then the decay law of the moving particle looks as follows

Pp(t) = e
− Γ0 t

~ γ , (1)
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where t denotes time, Γ0 is the decay rate (time t and Γ0 are measured
in the rest reference frame of the particle) and γ is the relativistic Lorentz

factor, γ ≡ 1/
√

1 − β2, β = v/c , v = |~v | is the velocity of the particle,

~v = c~p/
√

~p2 + m2
0 c2 and m0 – is the rest mass. The equality (1) is the

classical physics relation. It is almost common belief that this equality is
valid also for any t in the case of quantum decay processes and does not
depend on the model of the unstable particles considered.

The problem seems to be extremely important because from some
theoretical studies it follows that in the case of quantum decay processes
this relation is valid to a sufficient accuracy only for not more than a few
lifetimes τ0 = ~/Γ0 [10, 11, 12, 13]. On the other hand all known tests of
the relation

Pp(t) = e
− Γ0 t

~ γ ,

were performed for times of the order of τ0 (see, eg. [14, 15]) and for
times longer than a few lifetimes this relation was not tested till now.
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So, in the following it will be shown that that in the case of unstable
systems in rest and decaying in vacuum there is no time interval in which
the survival probability (decay law) could be a decreasing function of
time of the purely exponential form. We also show that even in the case
of a single component unstable system the decay curve has an oscillatory
form with a smaller or a large amplitude of oscillations depending on the
model considered. In the following it will also be shown that the
relativistic treatment of the problem within the Stefanovich–Shirokov
theory [10, 11] yields decay curves tending to zero as t → ∞ much
slower than one would expect using classical time dilation relation which
confirms and generalizes some conclusions drawn in [13]. Our results
shows that conclusions relating to the quantum decay processes of
moving particles based on the use of the classical physics time dilation
relation need not be universally valid.
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Preliminaries

The main information about properties of quantum unstable systems is
contained in their decay law, that is in their survival probability. Let the
reference frame O0 be the common inertial rest frame for the observer
and for the unstable system. Then if one knows that the system in the
rest frame is in the initial unstable state |φ〉 ∈ H, (H is the Hilbert space
of states of the considered system), which was prepared at the initial
instant t0 = 0, one can calculate its survival probability (the decay law),
P0(t), of the unstable state |φ〉 decaying in vacuum, which equals

P0(t) = |a0(t)|2, (2)

where a0(t) is the probability amplitude of finding the system at the time
t in the rest frame O0 in the initial unstable state |φ〉,
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a0(t) = 〈φ|φ(t)〉. (3)

and |φ(t)〉 is the solution of the Schrödinger equation for the initial
condition |φ(0)〉 = |φ〉, which has the following form within the system
units ~ = c = 1 used in the next parts of this talk:

i
∂

∂t
|φ(t)〉 = H |φ(t)〉. (4)

Here |φ〉, |φ(t)〉 ∈ H, and H denotes the total self–adjoint Hamiltonian
for the system considered. Note that if |φ〉 represents an unstable state
then it cannot be an eigenvector for H : In such a case the eigenvalue
equation H |φ〉 = ǫφ|φ〉 has no solutions for |φ〉 under considerations.
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There is |φ(t)〉 = U(t)|φ〉, where U(t) = exp [−itH ] is unitary evolution
operator and U(0) = I is the unit operator. Operators H and U(t) have
common eigenfunctions.

The rest reference frame O0 is defined using common solution of the
eigenvalue problem for H and the momentum operator P:

P|µ; p〉 = ~p|µ; p〉, (5)

and
H |µ; p〉 = E ′(µ, p) |µ; p〉, (6)

where µ ≡ E ′(µ, 0) ∈ σc(H) and σc(H) is the continuous part of the
spectrum of the Hamiltonian H . Operators H and P act in the state
space H. There is (see [10, 11, 16, 17]),

E ′(µ, p) ≡
√

µ2 + (~p)2. (7)
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In the rest reference frame of the quantum unstable system O0, when
~p = 0, we have |µ; 0〉 = |µ; p = 0〉,

P|µ; 0〉 = 0, (8)

and
H |µ; 0〉 = µ |µ; 0〉, µ ∈ σc(H), (9)

Eigenvectors |µ; 0〉 are normalized as usual:

〈0; µ|µ′; 0〉 = δ(µ − µ′). (10)

Now we can model the unstable system in the rest system O0 as the

following wave–packet |φ0〉 ≡ |φ~p=0〉 def
= |φ〉,
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|φ0〉 ≡ |φ〉 =

∫ ∞

µ0

c(µ) |µ; 0〉 dµ, (11)

where expansion coefficients c(µ) are functions of the mass parameter µ,
that is of the rest mass µ. (Here µ0 is the lower bound of the spectrum
σc(H) of H). We require the state |φ0〉 to be normalized: So it has to be

∫ ∞

µ0

|c(µ)|2 dµ = 1. (12)

The expansion (11) and relation (9) allow one to find the amplitude a0(t)
and to write [6, 18]

a0(t) ≡
∫ ∞

µ0

ω(µ) e− i µ t dµ, (13)

where ω(µ) ≡ |c(µ)|2 > 0.
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So the amplitude a0(t), and thus the decay law P0(t) of the unstable
state |φ〉, are completely determined by the density of the mass (energy)
distribution ω(µ) for the system in this state [18] (see also:
[5, 6, 19, 20, 21, 22, 23]. From (13) and from the Riemann–Lebesque
lemma it follows that |a(t)| → 0 as t → ∞. It is because from the
normalization condition (12) it follows that ω(µ) is an absolutely
integrable function. (Note that this approach is also applicable in
Quantum Field Theory models [24, 25]).

Khalfin in his paper [5] published in 1957 assuming that the spectrum of
H must be bounded from below, µ0 > −∞), and using the Paley–Wiener
Theorem [26] proved that in the case of unstable states there must be

|a0(t)| ≥ A exp [−b tq],

for |t| → ∞. Here A > 0, b > 0 and 0 < q < 1. Therefore the decay law
P0(t) of unstable states decaying in the vacuum, (2), can not be
described by an exponential function of time t if time t is suitably long,
t → ∞, and that for these lengths of time P0(t) tends to zero as t → ∞
more slowly than any exponential function of t. This this effect was
confirmed in experiment described in the Rothe paper [27]:
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General properties of unstable states

Note that the use of the Schrödinger equation (4) allows one to find that
within the problem considered.

i
∂

∂t
〈φ|φ(t)〉 = 〈φ|H |φ(t)〉. (14)

This relation leads to the conclusion that the amplitude a0(t) satisfies
the following equation

i
∂a0(t)

∂t
= h(t) a0(t), (15)

where

h(t) =
〈φ|H |φ(t)〉

a0(t)
, (16)

and h(t) is the effective Hamiltonian governing the time evolution in the
subspace of unstable states H‖ = PH, where P = |φ〉〈φ| (see [28] and
also [29, 30] and references therein).
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The subspace H ⊖ H‖ = H⊥ ≡ QH is the subspace of decay products.
Here Q = I − P . There is the following equivalent formula for h(t)
[28, 29, 30]:

h(t) ≡ i

a0(t)

∂a0(t)

∂t
. (17)

If 〈φ|H |φ〉 exists then using unitary evolution operator U(t) and
projection operators P and Q the relation (16) can be rewritten as follows

h(t) = 〈φ|H |φ〉 +
〈φ|HQ U(t)|φ〉

a0(t)
. (18)

One meets the effective Hamiltonian h(t) when one starts with the
Schrödinger equation for the total state space H and looks for the
rigorous evolution equation for a distinguished subspace of states
H|| ⊂ H [28, 19].
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In general h(t) is a complex function of time and in the case of H‖ of
dimension two or more the effective Hamiltonian governing the time
evolution in such a subspace it is a non–hermitian matrix H‖ or
non-hermitian operator. There is

h(t) = µφ(t) − i

2
γφ(t), (19)

and
µφ(t) = ℜ [h(t)], γφ(t) = − 2 ℑ [h(t)], (20)

are the instantaneous mass (energy) µφ(t) and the instantaneous decay
rate, γφ(t) [28, 29, 30]. Here ℜ (z) and ℑ (z) denote the real and
imaginary parts of z respectively. The relations (15), (17) and (20) are
convenient when the density ω(µ) is given and one wants to find the
instantaneous mass µφ(t) and decay rate γφ(t): Inserting ω(µ) into (13)
one obtains the amplitude a0(t) and then using (17) one finds the h(t)
and thus µφ(t) and γφ(t).
From (18) it follows that

µφ(0) = 〈φ|H |φ〉, and γφ(0) = 0.
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Note that the state vector |φ〉 of the form (11) corresponding to a
quantum unstable system can not be an eigenvector of the

Hamiltonian H , otherwise it would be that

P0(t) = |〈φ|φ(t)〉|2 = |〈φ| exp [−itH ]φ〉|2 ≡ 1

for all times t.

The fact that the vector |φ〉 describing the unstable quantum system is
not the eigenvector for H means that the mass (energy) of this object is
not defined. Simply the mass can not take the exact constant value in
this state |φ〉. In such a case quantum systems are characterized by the
mass (energy) distribution density ω(µ) and the average mass

< m >=

∫ ∞

µ0

µ ω(µ) dµ

or by the instantaneous mass (energy) µφ(t) but not by the exact value
of the mass.
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The simplest way to compare the decay law P0(t) with the exponential
(canonical) decay law Pc(t), where Pc(t) = |ac(t)|2 and

ac(t) = exp [−i
t

~
(mφ − i

2
Γφ], (21)

(where Γφ is the decay rate) is to analyze properties of the following
function:

ζ(t)
def
=

a0(t)

ac(t)
. (22)

There is

|ζ(t)|2 =
P0(t)

Pc(t)
. (23)

Analysis of properties of this function allows one to visualize all the more
subtle differences between P0(t) and Pc(t).
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We have

∂ζ(t)

∂t
≡ i

~
(mφ − i

2
Γφ) ζ(t) + e+ i t

~
(mφ − i

2 Γφ) ∂a(t)

∂t

=
i

~
(mφ − i

2
Γφ) ζ(t) − i

~
h(t) ζ(t), (24)

where h(t) is the effective Hamiltonian defined by relations (16) — (18)

Let us use now the relation (18) and assume that 〈φ|H |φ〉 exists and
there exists instants 0 < t1 < t2 < ∞ of time t such that for any
t ∈ (t1, t2) there is

ζ(t) = ζ(t1) = ζ(t2) = const
def
= cφ 6= 0. (25)

In such a case there should be ∂ζ(t)
∂t

= 0 for all t ∈ (t1, t2). Taking into
account that by definition ζ(t) 6= 0 from (24) we conclude that it is
possible only and only if
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h(t) − (mφ − i

2
Γφ) = 0, for t1 ≤ t ≤ t2, (26)

that is, if and only if

h(t1) = h(t) = h(t2) = const
def
= ch 6= 0 for t1 ≤ t ≤ t2. (27)

Using (18) and the property |φ(t)〉 = U(t) |φ〉 one concludes that the
equality h(t1) = h(t) = ch can take place if

〈φ|HQ U(t1)|φ〉
a0(t1)

=
〈φ|HQ U(t)|φ〉

a0(t)
. (28)

Taking into account group properties of the one–parameter family of
unitary operators U(t) we can use in (28) U(t1) U(t − t1) ≡ U(t) instead
of U(t). Next keeping in mind that a0(t) 6= 0, a0(t1) 6= 0 and taking into

account that λ(t, t1)
def
= a0(t)

a0(t1) is a complex function one can replace the

relation (28) by the following one
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〈φ|HQ U(t1)
[

λ(t, t1)|φ〉 − U(t − t1)|φ〉
]

= 0. (29)

This condition can be satisfied in two cases: The first one is

U(t − t1)|φ〉 − λ(t, t1)|φ〉 = 0, (30)

and the second one occurs when

[ λ(t, t1)|φ〉 − U(t − t1)|φ〉] 6= 0

together with

(〈φ|H)+ = H |φ〉 ⊥ Q U(t1) [λ(t, t1)|φ〉 − U(t − t1)|φ〉.
The first case means that h(t1) = h(t) = ch = const which by (27)

means that ∂ζ(t)
∂t

= 0 if and only if the vector |φ〉 representing an
unstable state of the system is an eigenvector for the unitary evolution
operator U(t). As we noted earlier this operator U(t) and the total
Hamiltonian H of the system have common eigenvectors. This means

that h(t1) = h(t) = ch = const and thus ∂ζ(t)
∂t

= 0 for t ∈ (t1, t2) if and
only if the unstable state |φ〉 of the system is an eigenvector for H , which
is in contradiction with the property that the vector |φ〉 representing the
unstable state cannot be the eigenvector for the total Hamiltonian H .
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The second case: From the definition of the projectors P and Q it follows
that this case can be realized only if the vector H |φ〉 is proportional to

the vector |φ〉: H |φ〉 = αφ|φ〉, that is similarly to the first case ∂ζ(t)
∂t

= 0
if and only if the vector |φ〉 representing the unstable state of the system
considered is an eigenvector for the total Hamiltonian H , which is again
in clear contradiction with the condition that the vector |φ〉 representing
the unstable state cannot be the eigenvector for the total Hamiltonian H .

Taking into account implications of the above to possible realizations of
the relation (29) we conclude the supposition that such time interval
[t1, t2] can exist that h(t1) = h(t) = ch = const for t ∈ (t1, t2) and thus
ζ(t) = const = ζ(t1) = ζ(t2) for t ∈ (t1, t2) is false. So taking into
account the definition of ζ(t) the following conclusion follows: Within the
approach considered in this paper for any time interval [t1, t2] the decay
law can not be described by the exponential function of time. This
conclusion is the general one. It does not depend on models of quantum
unstable states.
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The another important conclusion is that at any time interval [t1, t2] the
effective Hamiltonian h(t) can not be constant. This means that at any
time interval [t1, t2] the instantaneous mass µφ(t) = ℜ [h(t)] in the rest
system O0 and decay rate γφ(t) = −2ℑ [h(t)] can not be constant in
time:

µφ(t) 6= const., γφ(t) 6= const. (31)

In other words, as it follows from the above analysis the case
µφ(t) = const and γφ(t) = const can be realized only if the state |φ〉 is
an eigenvector for the total Hamiltonian H , that is if an only if there is
no any decay od the state |φ〉.

This part of the talk was based, among others, on on the following
papers [31, 32]:

K. Urbanowski, True quantum face of the “exponential” decay law,
Eur. Phys. J. D, (2017) 71: 118.

K. Urbanowski, On the Velocity of Moving Relativistic Unstable
Quantum Systems, Advances in High Energy Physics 2015, Article
ID 461987.
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Numerical studies: The Breit–Wigner model

In general the spectral density ω(µ) has properties similar to the
scattering amplitude, i.e., it can be decomposed into a threshold factor, a
pole-function P(m) with a simple pole (often modeled by a Breit-Wigner)
and a smooth form factor F (µ). So, we can write

ω(µ) = Θ(µ − µ0) (µ − µ0)αl P(µ) F (µ), (32)

where αl depends on the angular momentum l through αl = α + l , [6]
(see equation (6.1) in [6]), 0 ≤ α < 1) and Θ(µ) is a step function:
Θ(µ) = 0 for µ ≤ 0 and Θ(µ) = 1 for µ > 0. The simplest choice is to
take α = 0, l = 0, F (µ) = 1 and to assume that P(µ) has a Breit–Wigner
form. It turns out that the decay curves obtained in this simplest case are
very similar in form to the curves calculated for more general ω(µ)
defined by (32) (see [20] and analysis in [6]). So to find the most typical
properties of the decay curve it is sufficient to make the relevant
calculations for ω(µ) modeled by the the Breit–Wigner distribution of the
energy density ω(µ) ≡ ωBW (µ):
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Numerical studies: The Breit–Wigner model

ωBW (µ) =
N

2π
Θ(µ − µ0)

Γ0

(µ − m0)2 + (Γ0

2 )2
, (33)

where N is a normalization constant and Θ(µ) is a step function.

Inserting (33) into (13) one can find analytical expression for a0(t) (see,
eg. [29, 30, 33]):

a0(t) = N e− i
~

(m0 − i Γ0

2 )t ×

×
{

1 − i

2π

[

e
Γ0t
~ E1

(

− i

~
(mR +

i

2
Γ0)t

)

+(−1)E1

(

− i

~
(mR − i

2
Γ0)t

) ] }

, (34)

where E1(x) denotes the integral–exponential function defined according
to [34, 35] and mR = m0 − µ0.
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Numerical studies: The Breit–Wigner model

From the last formula one finds that there is for t → ∞:

a0(t) t→∞ ≃ N

2π
e− i

~
µ0t

{

(−i)
Γ0

| h0 − µ0 | 2

~

t

−2
(m0 − µ0) Γ0

| h0 − µ0 | 4

(

~

t

)2

+ . . .
}

(35)

where h0 = m0 − i
2 Γ0, and

µφ(t)
t→∞ ≃ µ0 − 2

m0 − µ0

| h0 − µ0 | 2

(

~

t

)2

+ . . . , (36)

where µφ(t) = ℜ [h(t)] and h(t) is defined by (16), (17).

Now analytical results presented above will be illustrated graphically. The
typical form of the survival probability P0(t) is presented in Fig (1).
Numerical calculations were made for the distribution of the mass
(energy) density ω(µ) having the Breit–Wigner form (33).
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Numerical studies: The Breit–Wigner model

The form of the decay curves depend on the ratio sR = mR

Γ0
: The smaller

sR , the shorter the time when the late time deviations form the
exponential form of P0(t) begin to dominate.

Rysunek: (1) Decay curves obtained for ωBW (E) given by Eq. (33). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities on a
logarithmic scale (The solid line — the decay curve P0(t) = |a0(t)|2; The
dotted line — the canonical decay curve Pc(t) = |ac(t)|2. The case
sR = mR

Γ0
= 1000.
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Numerical studies: The Breit–Wigner model

Rysunek: (2) Decay curves obtained for ωBW (E) given by Eq. (33). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities on a
logarithmic scale (The solid line — the decay curve P0(t) = |a0(t)|2; The
dotted line — the canonical decay curve Pc(t) = |ac(t)|2. The case
sR = mR

Γ0
= 1000.
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Numerical studies: The Breit–Wigner model

Within the considered model the standard canonical form of the survival
amplitude ac(t), is given by the following relation,

ac(t) = exp [−i
t

~
(m0 − i

2
Γ0)]. (37)

Γ0 is the decay rate and ~

Γ0
≡ 1

Γ0
= τ0 is the lifetime within the assumed

system of units ~ = c = 1 (time t and Γ0 are measured in the rest
reference frame of the particle),

Pc(t) = |ac(t)|2 ≡ e− Γ0

~
t , (38)

is the canonical form of the survival amplitude.

The case ω(µ) = ωBW (µ) is the typical case considered in numerous
papers and used therein to model decay processes. Therefore it is very
important to analyze real form of the decay curves obtained using
ω(µ) = ωBW (µ) and this is why we consider this case here.
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Numerical studies: The Breit–Wigner model

As already noted it is convenient to consider the function

ζ(t)
def
=

a0(t)

ac(t)
.

This is because

|ζ(t)|2 =
P0(t)

Pc(t)
,

Analysis of properties of this function allows one to visualize all the more
subtle differences between P0(t) and Pc(t). This function was used to
find numerically |ζ(t)|2 for ω(m) = ωBW (m). Results of numerical
calculations are presented in Figs (3) and (4): It turns out that in the
case considered the form of |ζ(t)|2 also depend on the ratio

sR
def
= mR

Γ0
≡ m0−µ0

Γ0
.
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Numerical studies: The Breit–Wigner model

Rysunek: (3) A comparison of decay curves obtained for ωBW (µ) given by Eq.
(33) with canonical decay curves. Axes: x = t/τ0 — time t is measured in

lifetimes τ0, y — The function f (t) = (|ζ(t)|2 − 1) = P0(t)
Pc (t)

− 1, where ζ(t) is

defined by the formula (22). The left panel: sR = 10. The right panel:
sR = 100. The lower panel: sR = 1000.
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Numerical studies: The Breit–Wigner model

Rysunek: (4) A comparison of decay curves obtained for ωBW (µ) given by Eq.
(33) with canonical decay curves. Axes: x = t/τ0 — time t is measured in

lifetimes τ0, y — The function f (t) = (|ζ(t)|2 − 1) = P0(t)
Pc (t)

− 1, where ζ(t) is

defined by the formula (22), P0(t) = |a0(t)|2, Pc(t) = |ac(t)|2. The case
sR = 1000.
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Numerical studies: Instantaneous energy

From the analysis performed in the previous Section it follows that the
case µφ(t) = const and γφ(t) = const can be realized only if the state
|φ〉 is an eigenvector for the total Hamiltonian H , that is if an only if
there is no any decay od the state |φ〉. Results of numerical calculations
performed for ω(µ) = ωBW (µ) and presented in Fig (5) confirm such a
conclusion, that is the conclusion denoted as (31). In these Figures the
function

κ(t) =
µφ(t) − µ0

m0 − µ0
, (39)

is presented and calculations were performed for sR = mR

Γ0

= m0−µ0

Γ0
= 1000. The function κ(t) illustrates a typical behavior of

time-varying µφ(t).
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Numerical studies: Instantaneous energy
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Rysunek: (5) The instantaneous mass µφ(t) as a function of time obtained for
ωBW (µ). Axes: y = κ(t) − 1, where κ(t) is defined by (39); x = t/τφ: Time is
measured in lifetimes. The horizontal dashed line represents the value of
µφ(t) = m0.
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Numerical studies: Instantaneous energy

Rysunek: (6) The instantaneous mass µφ(t) as a function of time obtained for
ωBW (µ). Axes: y = κ(t), where κ(t) is defined by (39); x = t/τφ: Time is
measured in lifetimes. The horizontal dashed line represents the value of
µφ(t) = m0. sR = m0−µ0

Γ0
= 1000.
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Numerical studies: Conclusions

Summing up the oscillating decay curves of one component unstable
system can not be considered as something extraordinary or as anomaly:
It seems to be a universal feature of the decay process. The oscillatory
modulation of decay curves takes place even in the quantum unstable
system modeled by the Breit–Wigner distribution of the energy density. In
general, the oscillatory modulation of the survival probability and thus
the decay curves with model depending amplitude and oscillations period
takes place even in the case of one component unstable systems. From
results of the model calculations presented in Figs (3) and (4) it follows
that at the initial stage of the "exponential" (or "canonical") decay
regime the amplitude of these oscillations may be much less than the
accuracy of detectors. Then with increasing time the amplitude of
oscillations grows (see Fig. (4)), which increases the chances of observing
them. This is a true quantum picture of the decay process at the
so–called "exponential" regime of times.
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Numerical studies: Conclusions

The above part of the talk was based on on the following papers
[31, 32, 36, 37]:

K. Urbanowski, General properties of the evolution of unstable states
at long times, Eur. Phys. J. D, 54, 25, (2009).

K. Urbanowski, True quantum face of the “exponential” decay law,
Eur. Phys. J. D, (2017) 71: 118.

K. Urbanowski, The true face of quantum decay processes: Unstable
systems at rest and in motion, Acta Physica Polonica B, 48 , 1847,
(2017).

K. Urbanowski, On the Velocity of Moving Relativistic Unstable
Quantum Systems, Advances in High Energy Physics 2015, Article
ID 461987.

and others.
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Moving unstable systems

Analyzing moving unstable systems one can follow the classical physics
results and to assume that the unstable systems moves with the constant
velocity ~v , or guided by conservations laws to assume the momentum ~p
of the moving unstable system is constant in time. The assumption
~v = const was used, eg. by Exner [12]. Exner obtained result that
coincides with the classical result Pv(t) ≃ P0(t/γ) but detailed analysis
shows that this results was obtained assuming that the velocity ~v is very
small.
The second possibility to assume that ~p = const used by, e.g. Stefanovich
[10] or Shirkov [11] leads to the results which does not depend on that
whether the assumed momentum ~p = const is small or not.
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Moving unstable systems with constant momentum

Let us consider now the case of moving quantum system with definite
momentum. We need the probability amplitude ap(t) = 〈φp |φp(t)〉,
which defines the survival probability

Pp(t) = |ap(t)|2.

There is
|φp(t)〉 def

= exp [−itH ] |φp〉
in ~ = c = 1 units. So we need the vector |φp〉 and eigenvalues E ′(µ, p)
solving Eq. (6). Vectors |φ〉, |φp〉 are elements of the same state space H
connected with the coordinate rest system of the observer O: We are
looking for the decay law of the moving particle measured by the observer
O. If to assume for simplicity that P = (P1, 0, 0) and that
~v = (v1, 0, 0) ≡ (v , 0, 0) then there is ~p = (p, 0, 0) for the eigenvalues ~p
of the momentum operator P and |~p| = p. Hence (see [10, 11, 16, 17]),

H |µ; p〉 =
√

p2 + µ2 |µ; p〉 ≡ µ γµ|µ; p〉, (40)

which replaces Eq. (6). Here γµ ≡
√

p2+µ2

µ
.
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Moving unstable systems with constant momentum

In this idealized situation the moving quantum unstable particle φ with
definite momentum, ~p, can be modeled analogously as the quantum
unstable system in the rest frame (when ~p = 0) as the following
wave–packet |φp〉,

|φp〉 =

∫ ∞

µ0

c(µ) |µ; p〉 dµ, (41)

where expansion coefficients c(µ) are functions of the mass parameter µ,
that is of the rest mass µ, which is Lorentz invariant and therefore the
scalar functions c(µ) of µ are also Lorentz invariant and are the same as
in the rest reference frame O0.

Using (40) and the equation (41) we obtain the final relation for the
amplitude ap(t) (see [10, 11, 17]),

ap(t) ≡
∫ ∞

µ0

ω(µ) e− i
√

p2 + µ2 t dµ. (42)
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Moving unstable systems with constant momentum

Results of numerical calculations are presented in Fig (7), where
calculations were performed for ω(µ) = ωBW (µ) and µ0 = 0,
E0/Γ0 ≡ m0/Γ0 = 1000 and cp/Γ0 ≡ p/Γ0 = 1000. Values of these
parameters correspond to γ =

√
2, which is very close to γ from the

experiment performed by the GSI team [8, 9] and this is why such values
of them were chosen in our considerations. According to the literature for
laboratory systems a typical value of the ratio m0/Γ0 is
m0/Γ0 ≥ O(103 − 106) (see eg. [38]) therefore the choice m0/Γ0 = 1000
seems to be reasonable minimum.
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Moving unstable systems with constant momentum

Rysunek: (7) Decay curves obtained for ωBW (µ) given by Eq. (33). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities (panel
A: the logarithmic scales, (a) the decay curve Pp(t), (b) the decay curve
P0(t/γ), (c) the decay curve P0(t); panel B: (a) – Pp(t), (b) – P0(t/γ), (c) –
P0(t) ).
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Moving unstable systems with constant momentum

As it was mentioned earlier the formula (32) represents the general form
of ω(µ). Guided by this observation we follow [20] and assume that

ω(µ) = N Θ(µ − µ0)
√

µ − µ0

√
Γ0

(µ − m0)2 + (Γ0/2)2
e
−η µ

m0−µ0 , (43)

with η > 0. Decay curves corresponding to this ω(µ) were find
numerically for the case of the particle decaying in the rest system (the
survival probability P0(t)) as well as for the moving particle (the
non–decay probability Pp(t)). Results are presented in Figs (8) and (9).
In order to compare them with the results obtained for ωBW (µ),
calculations were performed for the same ratios as in that case:
m0/Γ0 = p/Γ0 = 1000, and µ0 = 0. The ratio ηΓ0/(m0 − µ0) ≡ ηΓ0/m0

was chosen to be ηΓ0/m0 = 0.01 (Fig. (8)) and ηΓ0/m0 = 0.006 (Fig.
(9)).
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Rysunek: (8) Decay curves obtained for ω(µ) given by Eq. (43). Axes:
x = t/τ0, and y — survival probabilities (panel A: the logarithmic scales, (a)
the decay curve Pp(t), (b) the decay curve P0(t/γ), (c) the decay curve P0(t);
panel B: (a) – Pp(t), (b) – P0(t/γ), (c) – P0(t) ).
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Rysunek: (9) Decay curves obtained for ω(µ) given by Eq. (43). Axes:
x = t/τ0, and y — survival probabilities (panel A: the logarithmic scales, (a)
the decay curve Pp(t), (b) the decay curve P0(t/γ), (c) the decay curve P0(t);
panel B: Pp(t); panel C : P0(t/γ) ).
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Moving unstable systems with constant momentum

Similarly to the case of quantum unstable systems in rest one can
calculate the ratio Pp(t)/Pc(t/γ) in the case of moving particles. Results
of numerical calculations of this ratio are presented in Figures (10) and
(11), and calculations were performed for ω(µ) = ωBW (µ) and for
µ0 = 0, m0/Γ0 = 1000, cp/Γ0 ≡ p/Γ0 = 1000 and γ =

√
2.
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Rysunek: (10) Axes: x = t/τ0 — time t is measured in lifetimes τ0, y — Ratio
of probabilities — Solid line: Pp(t)/Pc(t/γ); Dashed line P0(t/γ)/Pc(t/γ).
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Moving unstable systems with constant momentum
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Rysunek: (11) Axes:x = t/τ0 — time t is measured in lifetimes τ0, y — Ratio
of probabilities: Pp(t)/Pc(t/γ).
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Moving unstable systems with constant momentum

To conclude this discussion, note that within the theory considered the
case of ~v = const leads to the wrong result. Simply, if ~v = const then
γ = const and µ γµ in (40) is replaced by µγ and thus (40) takes the
following form in such a case,

H |µ; p〉 = µγ|µ; p〉, (44)

which leads to the following expression for the amplitude ap(t):

ap(t) =

∫ ∞

µ0

ω(µ) e− iµγ t dµ ≡ a0(γt). (45)

This gives the result

Pp(t) = |ap(t)|2 ≡ |a0(γt)|2 = P0(γt),

which was never met in experiments.
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Moving unstable systems with constant momentum

Results published e.g. in [13, 39]

K. Urbanowski, Decay law of relativistic particles: Quantum theory
meets special relativity, Physics Letters B 737, 346, (2014).

K. Urbanowski, Non–classical behavior of moving relativistic
unstable particles, Acta Physica Polonica B, 48, 1411 (2017).

and in other papers were presented in this part of the talk.
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Discussion: Possible applications and summary

Oscillatory modulated decay laws and the instantaneous energy

From the theoretical and numerical analysis presented earlier in this talk
we know that at times 0 < t < ∞ the oscillatory modulation of the
survival probability and instantaneous energy (mass) takes place. The
amplitude of these oscillations of the instantaneous energy (mass) is
extremely large at transition time region between exponential–like and
non–exponential form of the survival amplitude (see also e.g. Fig. (6)):

Rysunek: (12) The instantaneous energy Eφ(t) as a function of time obtained
for ωBW (µ). Axes: y = κ(t), where κ(t) is defined by (39); x = t/τφ: Time is
measured in lifetimes. The horizontal dashed line represents the value of
Eφ(t) = E0 (µφ(t) = m0). sR = E0−Emin

Γ0
≡ m0−µ0

Γ0
= 100 .
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Discussion: Possible applications and summary

In order to observe these effects one needs a very large number of
unstable particles. So, it seems that there is a chance to observe this
effect or its implications using astrophysical sources of unstable particles
emitting huge numbers of them with relativistic or ultra–relativistic
velocities in the relation to an external observer. Many of these particles
move freely in space with ultrahigh energies. Now the energy
conservation together with the fluctuations of the instantaneous energy
force these particles to move with the velocity varying in time. As a result
such unstable particles, which are charged or have non–zero magnetic
moment, have to emit electromagnetic radiation including X– and
γ–rays. Details can be found, e.g. here [40]:
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Discussion: Possible applications and summary

Cosmological implications

Krauss and Dent analyzing a false vacuum decay [38] pointed out that in
eternal inflation, many false vacuum regions can survive up to the times
much later than times when the exponential decay law approximately
holds. Within this scenario |φ〉 = |0〉F , and |0〉T - are a false and a true
vacuum states respectively and E0 ≡ Eqft = F 〈0|H |0〉F is the energy of a
state corresponding to the false vacuum measured at the initial instant of
the decay process and Emin ≡ E T

0 is the energy of true vacuum (i.e. the
true ground state of the system). Now one can use the property that the
energy of the system in the false vacuum state has the following form at
asymptotically late times

E F (t) ≃ E T
0 + d2

~
2

t2
+ d4

~
4

t4
+ · · · 6= E F

0 . (46)

Next, if to identify ρde(t0) with the energy E0 of the unstable system
divided by the volume V0 (where V0 is the volume of the system at

t = t0): ρde(t0) ≡ ρqft
de

def
= ρ0

de = E0

V0
and ρbare = Emin

V0
, (where ρqft

de is the
vacuum energy density calculated using quantum field theory methods),
then there is at asymptotically late, post–exponential times,
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Discussion: Possible applications and summary

ρde(t) = ρF
0(t) ≃ ρbare +

f2
t2

+
f4
t4

+ · · · , (t → ∞), (47)

where f2k = f ∗
2k . The analogous relation takes place for Λ(t) = 8πG

c2 ρ(t),
(or Λ(t) = 8πG ρ(t) in ~ = c = 1 units),

Λ(t) ≃ Λbare +
α2

t2
+

α4

t4
+ · · · , (t → ∞). (48)

From the above formulae it follows that Λbare is the limiting value of Λ(t)
reached when t → ∞.
Note that the form of κ(t) (see (39) does not change when one passes
from energies E (t), E0, Emin to the above defined energy density ρ and Λ,

κ(t) =
E (t) − Emin

E0 − Emin
≡

E(t)
V0

− Emin

V0

E0

V0
− Emin

V0

=
ρde(t) − ρbare

ρ0
de − ρbare

=
Λ(t) − Λbare

Λ0 − Λbare
.

(49)

The conception presented above was studied and developed, e.g. in
[41, 42, 43, 44, 45, 46]:
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Discussion: Possible applications and summary

K. Urbanowski, Comment on "Late time behavior of false vacuum
decay: Possible implications for cosmology and metastable inflating
states", Phys. Rev. Lett. 107, 209001, (2011).

K. Urbanowski, Properties of the false vacuum as the quantum
unstable state, Theor. Math. Phys. 190, 458, (2017).

M. Szydlowski, A. Stachowski and K. Urbanowski, Quantum
mechanical look at the radioactive–like decay of metastable dark
energy, Eur. Phys. J. C77, 902, (2017).

M. Szydlowski and A. Stachowski, Cosmological models with
running cosmological term and decaying dark matter, Phys. Dark
Univ. 15, 96, (2017).

Aleksander Stachowski1, Marek Szydłowski1, Krzysztof Urbanowski,
Cosmological implications of the transition from the false vacuum to
the true vacuum state, Eur. Phys. J. C 77, 357, (2017).

Marek Szydłowski, Aleksander Stachowski and Krzysztof
Urbanowski, Journal of Cosmology and Astroparticle Physics, 04

029 (2020).

and in other papers.
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Discussion: Possible applications and summary

The mass of the system in the unstable state |φ〉 is not defined: It
can not take the exact value. Unstable system can be characterized
by the mass distribution ω(µ), the average mass
< m >=

∫ ∞

µ0
µ ω(µ)dµ and by instantaneous mass (energy) µφ(t)

but not by the mass.

There is no any time interval in which the survival probability
(decay) law could be a decreasing function of time of the purely
exponential form: Even in the case of the Breit–Wigner model in
so–called "exponential regime" the decay curves are oscillatory
modulated with smaller or large amplitude of oscillations depending
on the parameters of the model.

At any time interval the instantaneous mass µφ(t) and
instantaneous decay rate γφ(t) can not be constant in time.
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Discussion: Possible applications and summary

In the case of moving relativistic quantum unstable system moving
with constant momentum ~p, when unstable systems are modeled by
the Brei–Wigner mass distribution ω(µ), only at times of the order
of lifetime τ0 it can be Pp(t) ≃ P0(t/γ) to a better or worse
approximation. At times longer than a few lifetimes the decay
process of moving particles observed by an observer in his rest
system is much slower that it follows from the classical physics

relation Pp(t)
?
= exp [− t

γ
Γ0]:

Pp(t) > P0(t/γ), for t ≫ τ0.

In the case of moving relativistic quantum unstable system moving
with constant momentum ~p decay curves are also oscillatory
modulated but the amplitude of these oscillations is higher than in
the case of unstable systems in rest.

There is a need to test the decay law of moving relativistic unstable
system for times much longer than the lifetime
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Discussion: Possible applications and summary

The experimental verification of deviations from the exponential
decay law is still of interest [47, 48]:

Alec Cao, Cora J. Fujiwara, Roshan Sajjad, Ethan Q. Simmons, Eva
Lindroth and David Weld, Probing Nonexponential Decay in
Floquet–Bloch Bands, Zeitschrift für Naturforschung A.75, 443 —-
448, (2020).
Gustav Andersson, Baladitya Suri, Lingzhen Guo, Thomas Aref and
Per Delsing, Non-exponential decay of a giant artificial atom, Nature

Physics,5, 1123 –– 1127, (2019).

GSI anomaly: Recent experiments and analysis of experimental data
does not confirm a oscillatory modulation of decay curve [49]:

F.C.Ozturk. et al, New test of modulated electron capture decay of
hydrogen–like 142Pm ions: Precision measurement of purely
exponential decay, Physics Letters B 797, 134800, 2019.
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Discussion: Possible applications and summary

Research in progress:

The reasonable approximation is to assume that Λbare equals to the
present measured value of the cosmological constant. On the other hand
there is Λ0 ≃ 10120Λbare, where Λ0 = Λqft = 8πG

c2 ρ0
de is the result obtained

by means methods of the quantum field theory. The great problem is to
explain this difference. It seems that the following observation can help to
solve this problem: There is

Λ(t) = Λbare + (Λ0 − Λbare) κ(t), (50)

or
Λ(t)

Λbare

=

(

Λ0

Λbare

− 1

)

κ(t) ≡
(

E0

Emin

− 1

)

κ(t), (51)

(see formulae (39), (49) for κ(t)). Using (51) and assuming values of the
ratios E0

Emin
, sR = E0−Emin

Γ0
one can find suitable parameters of the density

ω(E ) and then to find a class of Hamiltonians H being able to reproduce
desirable effect of the reduction Λ0 to Λbare . Partial results are presented
below in Figs (14), (15).
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Rysunek: (13) The instantaneous mass µφ(t) as a function of time obtained for
ωBW (µ). Axes: y = κ(t), where κ(t) is defined by (39); x = t/τφ: Time is
measured in lifetimes. The horizontal dashed line represents the value of
µφ(t) = m0. sR = m0−µ0

Γ0
= 100.
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Rysunek: (14) The instantaneous energy E(t) (mass µφ(t)) as a function of

time obtained for ωBW (µ). Axes: y =
∣

∣

E (t)
Emin

∣

∣ ≡
∣

∣

∣

Λ(t)
Λbare

∣

∣

∣
, x = t/τφ: Time is

measured in lifetimes. The case E0
Emin

≡ m0
µ0

=
Λqft

Λbare
= 1020, sR = m0−µ0

Γ0
= 100.
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Rysunek: (15) The instantaneous energy E(t) (mass µφ(t)) as a function of

time obtained for ωBW (µ). Axes: y =
∣

∣

E (t)
Emin

∣

∣ ≡
∣

∣

∣

Λ(t)
Λbare

∣

∣

∣
, x = t/τφ: Time is

measured in lifetimes. The case E0
Emin

≡ m0
µ0

=
Λqft

Λbare
= 1020, sR = m0−µ0

Γ0
= 1000.
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The end

Thank you for your attention
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Appendix

Let Λp,µ be the Lorentz transformation from the reference frame O0,
where the momentum of the unstable particle considered is zero, ~p = 0,
into the frame Op where the momentum of this particle is
~p ≡ (p, 0, 0) 6= 0 and p ≥ 0, or, equivalently, where its velocity equals

~v = ~vp,µ ≡ ~p
µ γµ

, (where µ is the rest mass and γµ ≡
√

p2 + (µ)2/µ).
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In this case the corresponding 4–vectors are:

℘ = (E/c , 0, 0, 0) ≡ (µ, 0, 0, 0) ∈ O0

within the considered system of units, and

℘′ = (E ′/c , p, 0, 0) ≡ (E ′, p, 0, 0) = Λp,µ ℘ ∈ Op.

There is
℘′ · ℘′ ≡ (Λp,µ ℘) · (Λp,µ ℘) = ℘ · ℘

in Minkowski space, which is an effect of the Lorentz invariance. (Here
the dot "·" denotes the scalar product in Minkowski space). Hence, in our
case:

because
℘ · ℘ ≡ µ2

and thus
(E ′)2 ≡ (E ′(µ, p))2 = p2 + µ2.

Another way to find E ′(µ, p) is to use the unitary representation,
U(Λp,µ), of the transformation Λp,µ, which acts in the Hilbert space H of
states |φ〉 ≡ |φ; 0〉, |φp〉 ∈ H.
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One can show that the vector U(Λp,µ)|µ; 0〉 is the common eigenvector
for operators H and P, that is that there is

|µ; p〉 ≡ U(Λp,µ)|µ; 0〉

(see, eg. [16]). Indeed, taking into account that operators H and P form
a 4–vector Pν ,

Pν = (P0, P) ≡ (P0, P1, 0, 0), and P0 ≡ H ,

we have
U−1(Λp,µ)PνU(Λp,µ) = Λp,µ; νλ Pλ,

where ν, λ = 0, 1, 2, 3 (see, e.g., [16], Chap. 4). From this general
transformation rule it follows that

U−1(Λp,µ)P0U(Λp,µ) = γµ (P0 + vµ P1)

≡ γµ(H + vµ P1), (52)

and

U−1(Λp,µ)P1U(Λp,µ) = γµ (vµP0 + P1)

≡ γµ(vµH + P1), (53)
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Based on the relation (52), one can show that that vectors U(Λp,µ)|µ; 0〉
are eigenvectors for the Hamiltonian H . There is

H U(Λp,µ)|µ; 0〉 = U(Λp,µ) U−1(Λp,µ) H U(Λp,µ)|µ; 0〉
= γµ U(Λp,µ) (H + vµ P1) |µ; 0〉. (54)

The Lorentz factor γµ corresponds to the rest mass µ being the
eigenvalue for the vector |µ; 0〉. There are γµ 6= γµ′ and vµ 6= vµ′ for
µ 6= µ′. From (5), (8) it follows that P1 |µ; 0〉 = 0 for p = 0, which
means that using (9) the relation (54) can be rewritten as follows

H U(Λp,µ)|µ; 0〉 = µγµ U(Λp,µ)|µ; 0〉. (55)

Taking into account the form of the γµ forced by the condition p = const
one concludes that in fact the eigenvalue found, µγµ, equals

µγµ ≡
√

p2 + µ2.

This is exactly the same result as that at the conclusion following from
the Lorentz invariance mentioned earlier:

E ′(µ, p) =
√

p2 + µ2,

which shows that the above considerations are self–consistent.
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Similarly one can show that vectors U(Λp,µ)|µ; 0〉 are the eigenvectors of
the momentum operator P for the eigenvalue µγµ vµ ≡ p, that is that

U(Λp,µ)|µ; 0〉 ≡ |µ; p〉.

Using (53) one finds

P1 U(Λp,µ)|µ; 0〉 = U(Λp,µ) U−1(Λp,µ) P1 U(Λp,µ)|µ; 0〉
= γµ U(Λp,µ) (vµ H + P1) |µ; 0〉. (56)

Again taking into account properties

P1 |µ; 0〉 = 0 and H |µ; 0〉 = µ|µ; 0〉

we conclude that

P1 U(Λp,µ)|µ; 0〉 = µγµvµ U(Λp,µ)|µ; 0〉
≡ p U(Λp,µ)|µ; 0〉, (57)

that is that U(Λp,µ)|µ; 0〉 ≡ |µ; p〉 which was to show.
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Thus finally we come to desired results:

H |µ; p〉 =
√

p2 + µ2 |µ; p〉 (58)

which replaces Eq. (6).

The moving quantum unstable particle φ with constant momentum, ~p,
can be modeled analogously as the quantum unstable system in the rest
frame (when ~p = 0) as the following wave–packet |φp〉,

|φp〉 =

∫ ∞

µ0

c(µ) |µ; p〉 dm, (59)

where expansion coefficients c(µ) are functions of the mass parameter µ,
that is of the rest mass µ, which is Lorentz invariant and therefore the
scalar functions c(µ) of µ are also Lorentz invariant and are the same as
in the rest reference frame O0.
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Now using (40) and the equation (41) we obtain the final, required
relation for the amplitude ap(t) (see [10, 11, 17]),

ap(t) =

∫ ∞

µ0

ω(µ) e− iµγµt dµ (60)

≡
∫ ∞

µ0

ω(µ) e− i
√

p2 + µ2 t dµ. (61)

This is the place when it should be explained why the Lorentz factor γµ

is used in (60) (and earlier in relations (52) — (57) instead of γµ = γ. In
the rest reference frame the unstable quantum system is modeled as the
wave packet given by the relation (11), that is as the following

wave–packet |φ0〉 ≡ |φ~p=0〉 def
= |φ〉,

|φ0〉 ≡ |φ〉 =

∫ ∞

µ0

c(µ) |µ; 0〉 dµ, (62)

Let us choose some eigenvalues of the spectrum σc(H) of H :
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µ1 < µ2 < . . . < µk < . . . < µn ∈ σc(H) = [µ0, ∞),

These eigenvalues are connected with corresponding eigenvectors |µk ; 0〉
of H as follows:

O0 Op

µ1 ↔ |µ1; 0〉 U(Λp;µ1
)7−→ |µ1; p〉 ↔ p = µ1γµ1 vµ1

µ2 ↔ |µ2; 0〉 U(Λp;µ2
)7−→ |µ2; p〉 ↔ p = µ2γµ2 vµ2

. . . . . . . . . . . . . . . . . . . . .

µk ↔ |µk ; 0〉 U(Λp;µk
)7−→ |µk ; p〉 ↔ p = µkγµk

vµk

. . . . . . . . . . . . . . . . . . . . .

µn ↔ |µn; 0〉 U(Λp;µn )7−→ |µn; p〉 ↔ p = µnγµn
vµn

,

(63)

(Let us recall that p = const.). As it is seen from the above analysis each
vector |µ; 0〉 numbered by µ ∈ σc(H) can be transformed correctly in the
vector |µ; p〉 connected with the reference frame Op only if one takes
into account that every point µ from the spectrum of H , considered as
the rest mass, has the "own" Lorentz factor

γ =

√

µ2 + p2

µ
≡ γµ.
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(The reference frame Op was defined by condition ~p = const 6= 0, and
O0 = Op=0). In other words it is impossible to realize the above
transformations of vectors |µ; 0〉 assigned to a reference frame O0 to the
reference frame Op if ~v = const.

The above derivation of the expression for ap(t) is similar to that of [13].
It is based on [16] and it is reproduced here for the convenience of
listeners. This is a shortened and slightly changed, simplified version of
the considerations presented in [10] and mainly in [11].
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